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FAST MULTIPOLE BOUNDARY ELEMENT METHOD

The fast multipole method is one of the most important algorithms in
computing developed in the 20th century. Along with the fast multi-
pole method, the boundary element method (BEM) has also emerged
as a powerful method for modeling large-scale problems. BEM mod-
els with millions of unknowns on the boundary can now be solved on
desktop computers using the fast multipole BEM. This is the first book
on the fast multipole BEM, which brings together the classical theo-
ries ift BEM formulations and the recent development of the fast multi-
pole method. Two- and three-dimensional potential, elastostatic, Stokes
flow, and acoustic wave problems are covered, supplemented with exer-
cise problems and computer source codes. Applications in modeling
nanocomposite materials, biomaterials, fuel cells, acoustic waves, and
image-based simulations are demonstrated to show the potential of the
fast multipole BEM. This book will help students, researchers, and engi-
neers to learn the BEM and fast multipole method from a single source.

Dr. Yijun Liu has more than 25 years of research experience on the
BEM for subjects including potential; elasticity; Stokes flow; and elec-
tromagnetic, elastic, and acoustic wave problems, and he has published
extensively in research journals. He received his Ph.D. in theoretical and
applied mechanics from the University of Illinois and, after a postdoc-
toral research appointment at Iowa State University, he joined the Ford
Motor Company as a CAE (computer-aided engineering) analyst. He
has been a faculty member in the Department of Mechanical Engineer-
ing at the University of Cincinnati since 1996. Dr. Liu is currently on the
editorial board of the international journals Engineering Analysis with
Boundary Elements and the Electronic Journal of Boundary Elements.



Preface

This book is an introduction to the fast multipole boundary element method
(BEM), which has emerged in recent years as a powerful and practical numer-
ical tool for solving large-scale engineering problems based on the boundary
integral equation (BIE) formulations. The book integrates the classical results
in BIE formulations, the conventional BEM approaches applied in solving
these BIEs, and the recent fast multipole BEM approaches for solving large-
scale BEM models. The topics covered in this book include potential, elastic-
ity, Stokes flow, and acoustic wave problems in both two-dimensional (2D)
and three-dimensional (3D) domains.

The book can be used as a textbook for a graduate course in engineering
and by researchers in the field of applied mechanics and engineers from indus-
tries who would like to further develop or apply the fast multipole BEM to
solve large-scale engineering problems in their own field. This book is based
on the lecture notes developed by the author over the years for a graduate
course on the BEM in the Department of Mechanical Engineering at the Uni-
versity of Cincinnati. Many of the results are also from the research work of the
author’s group at Cincinnati and from the collaborative research conducted by
the author with other researchers during the last 20 years.

The book is divided into six chapters. Chapter 1 is a brief introduction
to the BEM and the fast multipole method. Discussions on the advantages
of the BEM are highlighted. A simple beam problem is used to illustrate the
idea of transforming a problem cast in a differential equation formulation to a
boundary equation formulation. The mathematical background needed in this
book is also reviewed in this chapter.

Chapter 2 is on the potential problems governed by the Poisson equation
or the Laplace equation. This is the most important chapter of this book, which
presents the procedures in developing the BIE formulations and the conven-
tional BEM to solve these BIEs. The fundamental solution and its proper-
ties are discussed. Both the conventional (singular) and hypersingular BIE
formulations are presented, and the weakly singular nature of these BIEs is
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emphasized. Discretization of the BIEs using constant and higher-order ele-
ments is presented, and the related issues in handling multidomain problems,
domain integrals, and indirect BIE formulations are also reviewed. Finally,
programming for the conventional BEM is discussed, followed by numerical
examples solved by using the conventional BEM.

Chapter 3 is on the fast multipole BEM for solving potential problems,
which lays the foundations for all the subsequent chapters. Detailed deriva-
tions of the formulations, discussions on the algorithms, and computer pro-
gramming for the fast multipole BEM are presented for 2D potential prob-
lems, which will serve as the prototype of the fast multipole BEM for all other
problems discussed in the subsequent chapters. Then, the fast multipole for-
mulation for 3D potential problems is presented. Numerical examples of both
2D and 3D problems are presented to demonstrate the efficiency and accu-
racy of the fast multipole BEM for solving large-scale problems. This chap-
ter should be considered the focus of this book and studied thoroughly if one
wishes to develop his or her own fast multipole BEM computer codes for solv-
ing other problems.

The approaches and results developed in Chapters 2 and 3 are extended
in the following three chapters to solve 2D and 3D elasticity problems (Chap-
ter 4), Stokes flow problems (Chapter 5), and acoustic wave problems (Chap-
ter 6). In each case, the related BIE formulations are presented first, and the
same systematic fast multipole BEM approaches developed for 2D and 3D
potential problems are extended to the related fast multipole formulations for
the subject of the chapter. In all of these chapters, the use of the dual BIE for-
mulations (a linear combination of the conventional and hypersingular BIEs)
is emphasized because of the faster convergence rate they have for the fast
multipole BEM solutions.

One important objective of this book is to demonstrate the applications
of the fast multipole BEM in solving large-scale practical engineering prob-
lems. To this end, many numerical examples are presented in Chapters 3-6 to
demonstrate the relevance and usefulness of the fast multipole BEM, not only
in academic research but also in real engineering applications. Many of the
large-scale models solved by using the fast multipole BEM are still beyond
the reach of the domain-based numerical methods, which clearly demonstrates
the huge potentials of the fast multipole BEM in many emerging areas such as
modeling of advanced composites, biomaterials, microelectromechanical sys-
tems, structural acoustics, and image-based modeling and analysis.

Exercise problems are provided at the end of each chapter for readers to
review the materials covered in the chapter. More exercise problems or course
projects on computer-code development and software applications can be uti-
lized to help further understand the methods and enhance the skills. All of the
computer programs of the fast multipole BEM for potential, elasticity, Stokes
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flow and acoustic wave problems that are discussed in this book are available
from the author’s website (http://urbana.mie.uc.edu/yliu).

Analytical integration of the kernel functions for 2D potential, elasticity,
and Stokes flow cases and the sample computer source codes for both the 2D
potential conventional BEM and the fast multipole BEM are provided in the
two appendices. Electronic copies of these source codes can be downloaded
from this book’s webpage at the Cambridge University Press website. Refer-
ences for all the chapters are provided at the end of the book.

The author hopes that this book will help to advance the fast multipole
BEM - an elegant numerical method that has huge potential in solving many
large-scale problems in engineering. The author welcomes any comments and
suggestions on further improving this book in its future editions and also takes
full responsibility for any mistakes and typographical errors in this current
edition.

Yijun Liu
Cincinnati, Ohio, USA
Yijun.Liu@uc.edu
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- Introduction

1.1 What Is the Boundary Element Method?

The boundary element method (BEM) is a numerical method for solving
boundary-value or initial-value problems formulated by use of boundary inte-
gral equations (BIEs). In some literature, it is also called the boundary inte-
gral equation method. Figure 1.1 shows the relation of the BEM to other
numerical methods commonly applied in engineering, namely the finite differ-
ence method (FDM), finite element method (FEM), element-free (or meshfree)
method (EFM), and boundary node method (BNM). The FDM, FEM, and
EFM can be regarded as domain-based methods that use ordinary differential
equation (ODE) or partial differential equation (PDE) formulations, whereas
the BEM and BNM are regarded as boundary-based methods that use the BIE
formulations. It should be noted that the ODE/PDE formulation and the BIE
formulation for a given problem are equivalent mathematically and represent
the local and global statements of the same problem, respectively. In the BEM,
only the boundaries — that is, surfaces for three-dimensional (3D) problems or
curves for two-dimensional (2D) problems — of a problem domain need to be
discretized. However, the BEM does have similarities to the FEM in that it
does use elements, nodes, and shape functions, but on the boundaries only.
This reduction in dimensions brings about many advantages for the BEM that
are discussed in the following sections and throughout this book.

1.2 Why the Boundary Element Method?

The BEM offers some unique advantages for solving many engineering prob-
lems. The following are the main advantages of the BEM:

e Accuracy: The BEM is a semianalytical method and thus is more accurate,
especially for stress concentration problems such as fracture analysis of
structures.



