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Preface

This textbook discusses selected applications of linear alge-
bra. The presentation is suitable for students who have completed
or are taking concurrently a standard sophomore-level course in lin-
ear algebra.

Topics are drawn from a wide variety of fields including busi-
ness, economics, engineering, physics, computer science, geometry,
approximation theory, ecology, sociology, demography, and genetics.
Also included is a brief introduction to game theory, Markov chains,
and graph theory. At the end of the text there is a three chapter
minicourse in linear programming which can be covered in about six
lectures.

With a few clearly-marked exceptions, each application 1is in
its own independent chapter, so that chapters can be deleted or per-
muted freely to fit individual needs and interests. Each topic be-
gins with a list of linear algebra prerequisites in order that a
reader can tell in advance if he or she has sufficient background to
read the chapter.

Since the topics vary considerably in difficulty, we have in-
cluded a subjective rating of each topic -—— easy, moderate, more
difficult. (See the Guide for the Instructor following this pref-
ace.) Our evaluation is based more on the intrinsic difficulty of
the material rather than the number of prerequisites; thus a topic
requiring fewer mathematical prerequisites may be rated harder than
one requiring more prerequisites.

Since our primary objective is to present applications of lin-
ear algebra, proofs are often omitted. We assume the reader has met
the linear algebra prerequisites and whenever results from other
fields are needed, they are stated precisely (with motivation where
possible), but usually without proof.

Although this text was written to be used with Howard Anton's
Elementary Linear Algebra, John Wiley and Sons, Inc., we have avoided
specialized notation or terminology so that this book can be utilized
in conjunction with any standard undergraduate text in linear algebra.

There are several possible ways to use this book:

(a) as a supplement to a standard linear algebra text,
(b) as a textbook for a follow-up course to linear algebra,

(c) as part of a self-study enrichment program or an intro-
duction to mathematical research.
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In addition this text may serve as a source of topics for a mathema-

tical modeling or computer programming course.
Four new chapters are included in this second edition:

Plane Geometry

Equilibrium of Rigid Bodies
The Assignment Problem
Computer Graphics

A solutions manual has also been prepared in conjunction with the
second edition. It contains complete solutions to all of the

exercises in the text.
We would like to express our appreciation to Kathleen R. McCabe

of Techni-Type who typed the entire manuscript. Her patience and
skill contributed greatly to the appearance of this text. Our thanks
are also due to Charles Shuman, who assisted with the exercises and
examples, and Dennis DeTurck, who prepared the solutions manual. We
also express our appreciation for the guidance provided by the re-
viewers: Keith J. Craswell of Western Washington University, Harry
W. McLaughlin of Rensselaer Polytechnic Institute, and Roberto Mena
of the University of Wyoming. Finally, we thank J. Robert Parker
for his artistic assistance and the entire Wiley staff, especially
Judy Hirsch and Gary Ostedt, for their encouragement and guidance.

Chris Rorres

Howard Anton
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Constructing
Curves and
Surfaces through
Specified Points

A4 technique for using determinants to construct
lines, circles, and general conic sections
through specified points in the plane is de-
secribed. The procedure is also used to pass
planes and spheres in three~dimensional space

through fixed points.

————— la— — da—— e — i

PREREGUISITES: Linear systems
Determinants
Analytic geometry

—

INTRODUCTION

One of the fundamental results in the theory of Linear Algebra
1s the following:

A homogeneous linear system with as many equations as

unknowns has a nontrivial solution i1f and only if the

determinant of the system is zero.




2/ Curves and Surfaces

In this chapter, we show how this result may be used to determine
the equations of various curves and surfaces through specified
points. We proceed immediately to some specific examples.

A LINE THRouGH Two POINTS

Suppose we are given two dis-
tinct points in the plane, (xy, y;)
and (w2, y2). There is a unique
line,
= (0, (1.1)

C X+ ey +e

1 3

which passes through these two
points. Notice that @1, C9, and
¢z are not all zero, and tﬁat
these coefficients are unique only
up to a multiplicative constant.

Since (21, y1) and (x5, ¥7)
lie on the line, substituting them in (1.1) gives the two equations

clxl+czy1+c'3=0 (1.2)

clx2+czy2+03=0. (1.3)

The three equations, (1.1), (1.2), and (1.3), may be grouped togeth-
er 1n system form as

X Cyty 02+cs=0
%21 +y1c32+(33=0
Tyl r¥eptes=0.

In this form, we have a homogeneous system of three equations for
Cl, ¢2, and c3. Since ¢, ¢y, and ¢z are not all zero, this system
has a nontrivial solution, and so the determinant of the system must
be zero. That is,

r oy 1
£y Y, 1i=0. (1.4)
Ly Y, 1

Consequently, every point (x, y) on the line satisfies (1.4), and con-
versely, every point (x, y) which satisfies (1.4) lies on the line.
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ExampLE 1.1 Find the equation of the line which passes through
the two points (2, 1) and (3, 7). ,

SOLUTION Substitution of the coordinates of the two points into
Eq. (1.4) gives

1

x Yy 1
2 1 1]= 0.
3 7 11

The cofactor expansion of this determinant along the first row then
gives:

-br+y +11=0.

A CircLE THROUGH THREE POINTS

Y
Let us be given three dis-

tinct points in the plane, (7, Y1), (X3, Y2/

(x2, ¥2), and (x3, Yz), not all lying
on a straight line. From analytic

geometry, we know that there is a
unique circle, say

2 2
cl(:x: + Y )+c32x+c33y+@4=0, (1.5)

. , ' @3, Y3/
which passes through them (Fig. -
1.2). Substituting the coordi-
nates of the three points into
this equation gives Figyre 1.2

( 2-+ 2)-+ + + =0 1.6
0 Bl TS R o M A TR e (1.6)
c(m2+y2)+c33: tey,+c,=0 (1.7)

1V2 Y2 272 T2 74 )
e Gr2-+ 2) + + oy, + =0 1
173 T Y3/ Tty T egl gt e = 0. (1.8)

As before, Eqs. (1.5) - (1.8) form a homogeneous linear system with a
nontrivial solution for 1, @2, C3, and ¢4. Thus the determinant of
this linear system is zero:
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= 0. (1.9)

This is a determinant form for the equation of the circle.

ExAMPLE 1.2 Find the equation of the circle which passes through
the three points (1, 7), (6, 2), and (4, 6).

SOLUTION Substitution of the coordinates of the three points into
Eq. (1.9) gives

x2+y x y 1
50 1 7 1
40 6 2 1|°0
52 4 6 1

which reduces to
10[:02 +y2) - 20 - 40y - 200 =10.

In standard form this 1is

(x - 1)2+ (y - 2)2= 52.

Thus, the circle has center (1, 2) and radius 5.

A GeENERAL CoNic SectioN THrRoueH Five POINTS

The general equation of a 4

conic section in the plane (a para-
bola, hyperbola, or ellipse, and
degenerate forms of these three
curves) 1s given by

(xs, Ye)

2 2
C«'lil}' +C!2.’Ly+03y +C4a’,'+05y+(} =0. (x4.i 94) X

6

Figure 1.3
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This form contains six coefficients, although only five are needed
since we may divide through by any one of them which is not zero.

Thus, only five coefficients must be determined, so that five dis-
tinct points in the plane are sufficient to determine the equation

of the conic section (Fig. 1.3). As before, the equation may be
put in determinant form (see Exercise 1.6):

2 2
X XY Y X Y 1

2 2
¥y &Yy ¥y % oy 1
xz X Y y2 X Y 1

g 2 g ¢ 72 = 0. (1.10)
Tz TYz Yz Tz Yz 1
xz X z 1

4 Ta¥q4 Yg Ty Yy

2 2

Ts  T¥g Yy Ty Yy 1

EXAMPLE 1,3 An astronomer wants to determine the orbit of an
asterolid about the sun. He sets up a Cartesian coordinate system in
the plane of the orbit with the sun at the origin. Astronomical
units of measurement are used along the axes. (1 astronomical unit =
mean distance of earth to sun=93 million miles.) By Kepler's first
law, he knows that the orbit must be an ellipse. Consequently, he
makes five observations of the asteroid at five different times and
finds five points along the orbit to be

(5.764,0.648), (6.286,1.202), (6.759,1.823),
(7.168,2.526), (7.480,3.360).

Find the equation of the orbit.

SOLlITIOhl Substitution of the coordinates of the five given points

into Eq. (1.10) gives
2 2 !

X xy Y X Y 1
33.2294 3.735 0.420 S.764 0.648 1
39.514 7.556 1.445 6.286 1.202 1]
45.684 12.322 3.323 6.759 1.823 i
51,380 18.106 6.381 7.168 2.526 ]
55.950 25,133 11.290 7.480 3.360 ]

I

LBES(2
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7 —
6 1]
5 l
4
y (7.480, 3.360)
3 (7.168. 2.526)
| t |
2 L (6.759, 1.823) |
1 1M (6.286, 1.202)
Sun (5.764. 0.648)
0 O g
- — +—

-2 -1 0 1 2 3 4 5 6 7 8 9 10 N
Figure l.4

The cofactor expansion of this determinant along the first row re-
duces to

2% - 1.042y +1.30y° - 3.90z - 2.93y - 5.49 = 0.

Figure 1.4 is a diagram of the orbit, together with the five given
points.

A PLANE THROUGH THREE POINTS

In Exercise 1.7 we ask the reader to show the following: The
plane in 3-space with equation

clx+czy+c333+cz4=0

which passes through three noncollinear points (x7, y1, 31),
(€7, Y9, 25), and (x3, Y3, 33) is given by the determinant equation

x Y 2 1

X Y Z 1

I ) (1.11)
2 Y2 ®)

T3 ¥z Ez

EXAMPLE 1.4 The equation of the plane which passes through the
three noncollinear points (1, 1, 0), (2, 0, -1), and (2, 9, 2) is
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x Y 2 1
1 1 0 1
2 o0 -1 1|79
2 9 2 1

which reduces to

2:0—y+33-1=0a

A SPHERE THROUGH FourR POINTS

In Exercise 1.8 we ask the reader to show the followling: The
sphere in 3-space with equation

2 2

cl(:r + Yy +32)+G a+c.=0

LF Ol T CY2 T Cq

Z
which passes through four noncoplanar points (xy, Y3, 23);
(x5, Y2, 22), (@3,Y3, 23), and (x4, Y4, 24) is given by the following

determinant equation:

x2+y2+32 X Y 2 1

xf*ryf*“zf 1 ¥ 1
m§+y§+z§ T, Y5 25 11 = 0. (1.12)
x +y2+32 X Y 2 1
3 3 3 3 3 3
x +92+32 x Y 2 1
4 4 4 4 4 4

EXAMPLE 1.5 The equation of the sphere which passes through the
four pOintS (0, 3: 2): (1: "']-: 1): (2: 1: 0): and (-11 ]-: 3) 1s

x2+92+32 x Y 2 1

13 0 3 2 1
3 1 -1 1 11=20.
> 2 1 0 1

11 -1 1 3 1
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This reduces to

:c2+y2+32—4x— 2y - 62+ 5=0,

which in standard form 1is

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

-2+ (y-12+ (2- 3% = 0.

EXERCISES

Find the equations of the lines which pass through the following
points:

(a) (1,-1), (2,2)

(b) (0:1): (1"1)'

Find the equations of the circles which pass through the follow-
1ng points:

(a) (2, 6), (2,0}, (5,3)

(b) (2:"'2)§ (3:5): ("4:6)'

Find the equation of the conic section which passes through the
PDj_ntS (0,0), (0:"1): (2:0): (2:‘5): and (41'1)'

Find the equations of the planes in 3-space which pass through
the followlng points:

(&) (131:"3): (1:—111): (01'1:2)

(b) (2:331): (2:'11"1): (112:1)‘

Find the equations of the spheres in 3-space which pass through
the following points:

(a) (1,2,3), (-1,2,1), (1,0,1), (1,2,-1)

(b) (0,1,-2) (1,3,1) (2,-1,0) (3,1,-1).

Show that Eq. (1.10) is the equation of the conic section which
passes through five given distinct points.

Show that Eq. (1.11) 1s the equation of the plane in 3-space
which passes through three given noncollinear points.

Show that Eq. (1.12) is the equation of the sphere in 3-space
which passes through four given noncoplanar points.

Find a determinant equation for the parabola of the form

2 _
cly+c:'23: teogxt Cp = 0

which passes through three given noncollinear points in the
plane.



Plane Geometry

Vector algebra is used to prove theorems 1in

plane geometry.,

PREREGUISITES: Plane geometry
Vector algebra

Dot product

INTRODUCTION

The basic properties of Euclidean space were first systemati-
cally studied 23 centuries ago by Euclid, who began with accepted
axioms and deduced theorems in plane and solid geometry from them.
In this chapter, we prove some elementary theorems in plane geometry
using vector algebra. This method usually leads to simpler and more
elegant proofs than the methods studied in a first course in geo-
metry — the same methods that Euclid himself employed. This is
because the basic equations of vector algebra, such as

a+b = b+a
a+(b+c) = (a+b) +c
a+(-a) =0

9



10/ Plane Geometry

are vector space axioms and therefore apply to Euclidean space.
Thus, any new equation we can generate from these basic equations
constitutes a theorem. Since it is easier to manipulate equations
than to write out in words how one is applying axioms, a certain
economy of thought is attained and a cleaner presentation of a proof
results,

Before presenting some examples of such vector techniques
applied to plane geometry, we introduce some notation and review

some basic definitions.

NOTATION AND DEFINITIONS

For our applications to plane
geometry, a vector may be viewed A
as a directed line segment. We B
shall use the following notation
(Fig. 2.1): If A and B are two
points, then AB denotes the (un- B
directed) line segment connecting a

A and B and 4B denotes the direct-

ed Iine segment or vector from b
point 4 to point B. We shall use
a and b to denote vectors from an
arbitrary fixed reference point 0
to the points 4 and B, respective-

ly. ] ) :
y. Notice that we may write Figure 2.1

-

A3=b"a-

We assume that the reader is familiar with the usual rules of
vector algebra. However, it will be convenient to state the follow-
ing criterion for determining when three points are collinear:

A

Let A, B, and C be three
pointe and let a, b, and ¢ be the
vectors from a fixed point 0 to
A, B, and C, respectively (Fig.
2.2). Then B lies on the line
gegment AC tf and only if

b = Xxa+ (1-X)c
for some number ) satisfying

0 < X < 1.

Figure 2.2
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When the above criterion is satisfied, the point B cuts the
line segment AC in the ratio A:(1-21). For example, if A=3%, 1i.e.
if b= 4(a+c), then B is the midpoint of AC; while if A =%, 1i.e.
if b=ga+ 4c, then B cuts AC in the ratio 2:1.

We also recall the definition of the dot (or scalar or inner)
product a*b of two nonzero vectors & and b:

a-b = |ja]||[b]| cos 6

= ab cos 8

Here, ||a|] or a is the length of
vector a, ||b|] or b is the length
of vectorb, and ©® is the angle o
between 8 and b (Fig. 2.3)}. A
useful property of the dot product b
is the fact that two nonzero vec-
tors are perpendicular to each
other if and only if their dot Figure 2.3
product is zero.

In Fig. 2.4 on the next page, seven definitions from plane geo-
metry are listed for reference. These are followed by six examples
in which six basic theorems are proved using vector algebra.
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A quadrilateral is a
four-sided polygon.

sides.

A trapezoid is a

quadrilateral with
one pair of parallel

i

A parallelogram is a
quadrilateral with two
pairs of parallel

sides.

The centroid or mean center of
a triangle ABC is the point P
determined by

o =-%(a-+b-+c).

The centroid or mean center of a
quadrilateral ABCD is the point
P determined by

P =—;}(a+b+c+d).

B

c
An altitude of a triangle ABC is
a line segment from one of the
vertices perpendicular to the
opposite side.

B

A C
A median of a triangle 4BC is a
line segment from one of the ver-
tices to the midpoint of the
opposide side.

Figsure 2.4



