: 4l s

L




Binary Automatic Control Systems



Advances
in

Science

and
Technology

in

the USSR

Technology Series

Tp279
£92




“’3‘:\‘»”“‘54 Y 4
\J\/\}U-l- sl X

Binary Automatic
Control Systems

S. V. EMELYANOYV,
Mem. USSR Acad. Sc.

Translated from the Russian by
Michael G. Edelev

nmmu

A

E8863120

il

Mir Publishers
Moscow



BuHapHbIe CACTEMEl aBTOMATHYCCKOrO yIIPaBJIeHUSA
C. B. Emeapanos
MapareasctBo ¢Mup» Mocksa

¥

.
First ,published 1987

Ha aneaulickom asvke
Printed in the Union of Soviet Socialist Republics

© UsmatenbctBo «Mip», 1987
© English translation, Mir Publishers, 1987



[ e
UL W DN =

oo
Do =~

oW www
~NwWw N

]
=1

[orNerXer] [orN o =2 ST UTUTOTUTUT U
[Nl ES RorRa OGN Wl

o N> Uik

> o>

CONTENTS

/
i w
‘g &
' _
. : W wl v ‘ ud
Introduction \ g 11e 7
BINARY SYSTEMS OF AUTOMATICMBQM’"
MOTIVATION, DEFINITIONS AND CONCEPTUALIZATION 10
Basic Principles and Definitions 10
Functional Diagrams of Control Systems in Classical Control
Theory Setting 10
Block Diagrams of Adaptive Control Systems 12
The Concept of Operator-Variable and the Binary Principle 14
Generalized Elements of Binary Dynamic Systems 16
New Types of Feedback 17
The Priuciples of Control Under Uncertainty 18
Three Principles of Control for Solving Control Problems 18
Methods of Control for Ill-Defined Dynamic Systems 23
Genperalized Block Diagrams of Binary Control Systems 28
Constructing Binary Control Systems 28
Structures of Binary Control Systems with Coordinate-Operator
Feedback 29
Structures of Binary Control Systems with Coordinate-Operator
and Operator Feedback 32
Structures of Binary Control Systems with Coordinate-Operator,
Operator, and Operator-Coordinate Feedback 34
FREE MOTION CONTROL 36
Definitions and Nomenclature 36
Time-Invariant Linear Coordinate Feedback 41
Finite Gain 4
High Feedback Gain 42
Constrained Control Signal 44
Imperfections 46
Linear Zone 49
Coordinate Feedback Under Inaccurate Information 51
Inaccuracies in Model Approximation 53
Coordinate-Operator Feedback 55
Proportional Coordinate-Operator Feedback 59
Proportional Coordinate-Operator Feedback with Magnitude
Bounded Output 61
Nonlinear Time-Invariant Coordinate-Operator Feedback 67
Bang-Bang Coordinate-Operator Feedback 75
Bang-Bang Coordinate-Operator Feedback with Constraints and
Dynamic Nonlinearities 79
Integral Coordinate-Operator Feedback 89
Integral Coordinate-Operator Feedback with a Constant Integra-
tion Rate 92

Inertial Coordinate-Operator Feedback 110



Contents

6.9 Integral Coordinate-Operator Feedback with Variable Integra-
tion Rate 118
6.10 Continuous Inertial Coordinate-Operator Feedback 124

6.11 S,f(2) Systems Under Integral Coordinate-Operator Feedback
Law

128
6.12 Application' of £, ‘Algorithms with Inertial Coordinate-Opera-

tor Feedback to S System Control 136
7 Operator Feedback 154
7.1 Sup (1) Systems with Integral Coordinate-Operator Feedback 160
7.2 S, and S,, Systems Under Imperfect Information 168
7.3 Sup (1) Systems with Inertial Coordinate-Operator Feedback 189
7.4 Quasicontinuous Control Algorithm 192
7.5 Syp (2) Systems with Integral Coordinate-Operator Feedback 206
7.6 S System Control with #,, Algorithms 214
8 Operator-Coordinate Feedback 221
8.1 OCFB Generation Concepts 224
8.2 Syv (1) Systems with Proportionalj and Integral Coordinate-
Operator Feedback 236
8.3 Suov (1) Systems with Proportional Operator-Coordinate and
Integral Coordinate-Operator Feedback 247
8.4 Syv (1) Systems with Integral Laws of Coordinate-Operator and
Operator-Coordinate Feedback 253
8.5 Sypv (1) Systems with Integral Laws of Coordinate-Operator and
Operator-Coordinate Feedback 258
8.6 Syov (1) Systems with Inertial Laws of Coordinate-Operator and
Operator-Coordinate Feedback 264
References

Index



INTRODUCTION

Modern industrial technology involving sophisticated
machinery, flexible automatic production lines, and wide-scale
robotization presents system technologists and industrial managers
with a number of new problems. They can be solved only on the con-
dition that the functional capabilities of available automatic control
systems be further expanded and the systems themselves acquire the
quality of rapid adaptation to varying environmental and operation-
al conditions including those brought about by the properties of the
plant being controlled. Wide-scale implementation of such control
systems would alleviate many labor consuming problems of system
design, adjustment, and operation.

At present the development of automatic control systems is a
complicated multistage process involving the expert skill of
analysts at each stage. As a rule, a development begins with an
analysis of the object of automation. A mathematical model of the
process is built on the basis of the pertinent laws of natural sciences.
This evolves as a manifold of cause-effect relationships. The prin-
cipal difficulties facing the analyst at this stage consist in deciding
on to what degree of detail the model should be elaborated. No
ready recipes exist for selection of optimum model size. One may
devote much time to problem evaluation and arrive at a very soph-
isticated model reflecting many subtle features of the plant. Such
a model will considerably complicate the subsequent stages of control
system development while the contribution of the fine features to
the final result may prove insignificant. Conversely, a relatively
simple mathematical model may be rapidly built and bring about
good results.

Choosing a model, therefore, is a nonformal creative stage,
and what comes out of it must be consistent with the overall object-
ive. The model size should take into account the technical means
available in the implementation of the control system concerned.
In any case, the model mirrors to some approximation the behavior
of the physical system. It is generated as a set of equations and
relations between the physical variables (or their functions) whose
time variations are essential for solving the control problem at hand.
Other variables either remain unrepresented in the mathematical
description of the controlled system or enter this description as
parameters. The latter not only define the nature and ranges of
parameter variations with time but also give the degree of uncer-
tainty under which the model will have to be handled as the vari-
ation laws for these variables are not known exactly. This implies
that the analyst working out control laws has to tackle uncertain
(ill-defined) dynamic systems.
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The second stage of development of such a control system is there-
fore concerned with the elimination of this uncertainty. Here the
designer strives to identify the model parameters, establish their
time variation laws or if impossible estimate the variation ranges
for these parameters. For many important applications the identi-
fication problem has to be solved not only at the design phase but
in system operation as well, either intermittently or consistently
(on line). The identification problem is critical and complicated.
Its solution is pivotal for system performance as a whole.

The next stage of system development concerns itself with the
choice of a feedback law. First, the general form of control law is
determined from the mathematical model and the objectives of
control, then the solutions to the identification problem are incor-
porated to compute the parameters of the chosen law. In some applic-
ations, now rather rare, the solution of problems occurring at this
stage may turn out relatively simple. Other situations necessitate
solving auxiliary problems involving large amount of computational
work, and even additional investigations. The procedure can be
improved to a certain degree by invoking computer aided design
(CAD) systems. It is quite obvious that a nonstationary plant requires
that the control law parameters be corrected consistently, and this
correction be set on line by skilled personnel.

Once the problems of the previous stage have been solved, the
general structure of automatic control system becomes clear enough
to be realized by technical means. The latter naturally can perform
the necessary functions to some accuracy, thus introducing additional
constraints and interferences into system performance. Allowance
for these constraints is not always possible at the preceding stages
hence a simulation experiment is needed. This experiment is carried
out with all, oraconsiderable part, of equipment being the same as
that expected to be in the actual system, while the plant and some
measuring and actuating devices are represented by simulation mo-
dels. The objective of this experiment is to test the designed system
for compliance with the performance specifications and, if necessary,
to introduce corrections into the settings of controller’s parame-
ters.

The final stage of development is devoted to performance tests
of the control system. Some final adjustments are introduced
into the control system on site as needed occasionally by actual
operation and effected by the maintenance personnel.

The list of problems as given above is typical of control system
development. The solution to these problems requires the efforts
of many skilled designers. Under the conditions of large-scale auto-
mation the need for such experts increases sharply and may be a
stumbling block on the way to extensive automation in the indu-
strial and social milieus.
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A possible solution to this problem may be the creationfof a con-
trol theory which would be capable of handling ill-defined plants,
accounting for actual constraints on the variables, parameters, and
controls intrinsic to the plant and technical means, excluding the
need for exact identification of model parameters and ensuring
efficient plant operation at arbitrary variation of circuit parameters:
over wide ranges. The respective control algorithms, of course, may
become rather sophisticated and require considerable computer ca-
pacities for their implementation. However the progress in computing:
achieved in the last decades has provided a strong foundation for prac-
tical implementation of the new approach to automation. The reli-
able, cheap, and efficient microprocessor hardware has changed
drastically the idea of the technical means of automation and has
eliminated many traditional limitations associated with the hard-
ships of implementation and the reliability of controllers.

All the aforementioned ideas and facts indicate that control
system designers are faced with new problems and at a new level
of possibilities in the implementation of control algorithms. New
methods, principles and procedures of control system development
are therefore highly desirable. A new theory of automatic control
outlined in this volume is an answer to this appeal. It is devised to
tackle the problems of automation outlined in the preceding para-
graphs. More specifically it develops new methods of analysis and
synthesis for essentially nonlinear systems. The theory is advantage-
ous in that it reduces the amount of necessary prior data and is con-
tent with variation ranges instead of the exact characteristics of the
plant.

The theory yields a final set of control algorithms each of which
is efficient in the control of a wide class of plants. A simple recursive:
rule of control system buildup is another feature of the theory which
in fact is a natural extension of classical control theory. Experience
with simulation and application of control systems developed in this
way has verified that they can be implemented easily and most
efficiently on the basis of computer logic, specifically microproces-
sor technology.



I Binary Systems
of Automatic Control:
Motivation, Definitions
and Conceptualization

This part outlines the basic principles and definitions
of binary dynamic systems. It describes how the error-closure control
principle and binary system concepts are used in the development
of automatic control systems for ill-defined dynamic processes or
plants operated under uncertainty. The principal properties and
features of binary control systems are emphasized and compared

with traditional control systems devised to solve the same control
problem.

1 Basic Principles and Definitions

1.1 Functional Diagrams
of Control Systems in Classical
Control Theory Setting

Functional block diagrams are widely used in different
disciplines to convey the principal features of processes and pheno-
mena under study. Block diagrams are convenient means of graphica
representation indicating in a straightforward manner the presence
and character of interactions between different processes in compli-
cated systems. They are appealing to the analyst’s intuition and
facilitate the system reappraisal and alteration to change its beha-
vior in the desired direction. The block-diagram representation
has proved efficient in solving many a problem including those of
automatic control for systems with lumped [1, 2, 4-6] and distri-
buted [1, 7-10] parameters.

In classical control theory, functional block diagrams a variable,
or coordinate, is represented by an arrow (Fig. 1.1a), while a dyna-
mic element, or operator, which defines a transformation of the
input into output variables, is represented by a block as in Fig. 1.1b.
Each block diagram picturing a control system containsa certain
number of operators and connecting coordinate paths between them.
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Figure 1.1

A particular type of block diagram depends upon many circumstanc-
es, specifically upon the concept of operator being employed—
whether the operator represents an individual component or some
subsystem constituted by elementary components. Fxamples of the
latter types are the generalized block diagrams given in Fig. 1.2.
These block diagrams have received numerous detailed treatments in
texts on classical control theory [1-7] and reflect the three basic
principles of control, viz. compensation (a), feedback (b), and com-
bined control (¢).

In the block diagrams of Fig. 1.2, y” (¢) is the reference input (or
setpoint) which is to be reproduced by the controlled variable y (?),
with z (f) being the error signal, and f (¢) an exterior disturbance
acting on the system. The black sector in the summing point shows
that the incoming signal arrives with an inverted phase, i.e. has
a minus sign.

In classical control theory, the major problem is to appropriately
choose operator D, representing the controller, time invariant
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12 Part One. Motivation, Definitions and Conceptualization

Figure 1.3

as a rule. There is a variety of techniques enabling this choice, dis-
similar in many aspects and depending on many factors, specifically
on the information that can be employed in the controller to form
the control, or manipulated, variable for the controlled plant.
Normally, operator D, is constituted by elementary components
(operators), representing different correcting elements, filters, etc.
linked in some arrangement. This arrangement is reflected by the
block diagram schematizing the network of operators and different
(feedforward, feedback, positive, negative) coordinate paths. An
example of such a block diagram, borrowed from Ref. 11, is given
in Fig. 1.3.

Classical control theory may be said to deal with systems which
can be represented by block diagrams constructed essentially with
the use of two basic elements, or concepts, namely, the operator and
the variable, or coordinate.

1.2 Block Diagrams
of Adaptive Control Systems

The theory of adaptive control has expanded the possi-
bilities of automatic systems. Methodologically this expansion has
been due to the acquisition of a new basic element—the variable-
parameter operator; its conventional graphical symbol is depicted
in Fig. 1.4. The incoming signal € (f) represents a function governing
the variation of parameters of operator D [11-14].

lam
x(t) u(t)

— 1 D

Figure 1.4
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Numerous reports on the subject have demonstrated that the in-
corporation of such an element widens the class of feasible controllers
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and enables the designer to develop systems capable of efficient
control over an entire class of plants.

By way of example, we take up three generalized block diagrams
of adaptive control systems which have been studied in sufficient
depth. The networks are dissimilar in the way they use the element
presented in Fig. 1.4. In the block diagram of Fig. 1.5a this element
(D,) represents an algorithm of coordinate control [11, 12]. In the
diagram at (b) this element (D;) is used to change some parameters
of the plant [13, 15-18]. Finally, the adaptive control network shown
at (c) realizes both these possibilities [13].

The problem of adaptive control synthesis reduces, therefore, to
the choice of a coordinate-control operator D, and an operator D,
(D}) which defines the adaptation algorithm. A popular approach
given the circumstances is as follows. The analyst selects at first an
invariable operator D, ensuring the desired quality of control at
some fixed parameters of the plant corresponding to its most typical
operating mode, and then synthesizes an operator D, which will
correct the parameters of D, to bring the actual closed-loop system
characteristics in correspondence with the specified values.

To sum up, the adaptive control systems may be said to correspond
to block diagrams constructed with the three basic elements, namely,
operators, variable parameter operators, and coordinate paths bet-
ween them [13, 19-23].

1.3 The Concept of Operator-Variable
and the Binary Principle

In what follows we develop a new methodological basis
for constructing block diagrams with the aim to widen the capabi-
lities of automatic control systems handling dynamic plants under
uncertainty. This methodology relies on the concept of operator-
variable, or operator-signal. In block diagrams, this variable will
be represented by a double-shafted arrow (Fig. 1.6).

operator - signat

D(t)
Figure 1.6

The operator-variable, or operator-signal, formally represents
a transformation applied to variables (coordinates). The concept of
operator-signal enables us to introduce a new, for control theory,
element depicted in Fig. 1.7. This element graphically represents
the fact that the transformation of coordinate z (¢) into y (¢) is
governed by an external operator-signal D (7).
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It would be proper to note here that D (f) may be an ordinary
signal which undergoes various transformations, that is, performs
as a coordinate. Thisimplies, specifically, that such a variable may be
included in the set of system variables where each generic element
of the set can be either a coordinate or an operator. The particular
label is decided by the role the element assumes in a specific trans-
formation.

The need for the new element has arisen from the fact that many
problems involve on-line alterations of data processing algorithms.
Physically, such an element can be implemented in many ways.
For example, the type of transformation may be changed paramet-
rically; the element concerned is then identical with the one employ-
ed in adaptive networks (see Fig. 1.4). Another way consists in using
a multiplication of signals. The element then assumes the form
represented graphically in Fig. 1.8a. The operator-signal may also
assume a logic form. Figure 1.8b illustrates, for example, how the
choice of certain D,, D,, ..., Dy is governed by the operator-
signal D (¢). It will be noted that the logic method of varying the
transformation operators is widely used in control systems with
variable structure [24, 25].

J(¢)

z8) D@
(a)

Log[c etement

Figure 1.8
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In practice, certain signals are responsible for changing the type
of transformation, therefore, it would be natural to introduce for
them a distinct nomenclature. They will be referred to as operator-
variables, or variant-operators, and denoted by Greek letters shown
mext to double-shafted arrows (Fig. 1.9). The distinction between

operator—-variable

}l(t)
Figure 1.9

variables referred to as coordinates and operator-variables is merely
conditional. For a casual reader unaware of the aforementioned dis-
tinction of variables, these are essentially the same—the variables
of the nonlinear dynamic system under consideration. The inter-
pretation of these variables is a methodological means whose effi-
ciency in system synthesis and analysis is yet to be demonstrated.
In view of the importance of the concepts being introduced for our
further consideration, we would like to emphasize once again that the-
re isno formal difference between coordinates and operator-variables.
The difference is conditional and associated with the way in which
the variable participates in specific local transformations.

We shall call a variable the coordinate if it is subjected to some
transformation. The same variable will be called the operator when
it determines the type of transformation performed over a coordinate.
This interpretation of state variables of a nonlinear dynamic system
will be referred to as the binary principle. Dynamic systems built

on this principle will, accordingly, be called binary dynamic sys-
tems.

1.4 Generalized Elements
of Binary Dynamic Systems

Here we are content to define the conceptual framework
that will be necessary in constructing a theory of binary control
systems. Like any variable, the operator-variable may be subjected
to a transformation and if the output of such a transformation
performs itself as an operator, then this mapping will be referred
to as the operator transformation. It is represented in block diagrams
as shown in Fig. 1.10a. If, on the other hand, the output is to be sub-
jected to another transformation on its downstream way, then the
former mapping will be referred to as an operator-coordinate transform-
ation and will be schematized as indicated at (b). Similar definitions
hold for the coordinate-operator type (c) and coordinate type (d) trans-
formations. The last one is an ordinary transformatien, it coincides



