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PREFACE

In this book we consider a Cauchy problem for a system of ordinary
differential equations with a small parameter. The book is divided into
three parts according to three ways of involving the small parameter in the
system.

In Part 1 we study the quasiregular Cauchy problem. That is, a problem
with the singularity included in a bounded function f, which depends on
time and a small parameter. This problem is a generalization of the regu-
larly perturbed Cauchy problem studied by Poincaré [35]. Some differential
equations which are solved by the averaging method can be reduced to a
quasiregular Cauchy problem. As an example, in Chapter 2 we consider the
van der Pol problem.

In Part 2 we study the Tikhonov problem. This is, a Cauchy problem
for a system of ordinary differential equations where the coefficients by the
derivatives are integer degrees of a small parameter.

In Part 3 we consider the double-singular Cauchy problem. That is, a
problem for a system of two vector ordinary differential equations, one of
which has a derivative multiplied by an integer degree of a small parame-
ter, and the right hand sides of the equations contain the small parameter
in singular, via function f, way (as in Part 1). Thus, the Cauchy problem
with a double singularity involves the singularities of both kinds studied in
the first two parts of the book. If the differential equation does not depend
explicitly on f then the problem becomes a Tikhonov problem from Part
2. In a special case the problem with a double singularity admits equa-
tions splitting off some equations which constitute a quasiregular Cauchy
problem from Part 1.

For all types of the problems considered in the book we construct
series generalizing the well known expansions of Poincaré and Vasiljeva—
Imanaliev. We prove that these series are either asymptotic expansions of
the solution or else converge to the solution on the interval, on the whole
semi-axis, or on asymptotically large time intervals. We prove theorems
providing estimates for the remainder term of the asymptotic expansion,
the time interval of solution existence and the range of small parameter val-
ues. To illustrate the possibilities of the methods considered we give some
examples.
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The book will be of interest to mathematicians specialising in differential
equations and to applied mathematicians who use the asymptotic methods
for ordinary differential equations.

The author thanks Professor 1.V. Novozhilov, her teacher, who initiated
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book.
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CHAPTER 1
SOLUTION EXPANSIONS OF THE QUASIREGULAR
CAUCHY PROBLEM

§1. Solution of the Quasiregular Cauchy Problem
1.1. DEFINITION OF THE QUASIREGULAR CAUCHY PROBLEM

Consider a Cauchy problem

%:F(;c,t,g,f(t,s)), Blyeg = 0. (1.1)
Here z € RN, FF € RN are N-dimensional vectors, f € RM™ is an M-
dimensional vector, ¢ € R is a small parameter, ¢ € R is an independent
variable (time), RY is N-dimensional real space.

Assume some notation. Let D, C R" be a neighborhood of the point
p=10, Dy C RM be a bounded domain, T', £ be positive numbers.

Definition 1.1. The problem (1.1) is called a quasireqular Cauchy problem
if: 1) F(z,t,e, f) is a smooth function defined on the direct product of the
neighborhood D, the intervals 0 < t < T, 0 < ¢ < & and the domain
Dy; 2) f is a smooth function mapping the direct product of the intervals
0<t<T,0<e<E to the domain Dy.

If the right side of the differential equation (1.1) does not depend ex-
plicitly on f, then (1.1) is a regularly perturbed Cauchy problem studied
by Poincaré [35] (see §9). As an example of function f complying with
Definition 1.1, we can take

f= (exp(—t/e)7 cos(t/g)).

1.2. CONSTRUCTION OF THE SOLUTION

Consider a problem with two small parameters:

d
d_j = Pla b8 F, 1], 2|t=0 = 0. (1.2)
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The problem (1.2) is a regularly perturbed Cauchy problem with respect
to the parameter €. Its solution is constructed by Poincaré’s method of the

small parameter, which goes as follows (suppose all the operations make
sense) [35].

— Let the solution z = z(t,e,u) be expanded in powers of the small
parameter €:

z(t e, p) = Z(kt,u (1.3)

— Substitute (1.3) in the equation (1.2).
— Expand both sides of the equations (1.2) in powers of €.
— Set equal the coefficients in terms with equal powers of €.

Finally, we have the equations for coefficients of the series (1.3).

The coefficient 2(9) (¢, u) (zero approzimation of the solution z(t,e, p) of
Eq. (1.2)) is the solution of the degenerate problem

dz(0)
= = FE®,6,0,5¢,m), 2Dy =0. (1.4)

For any k > 0 the coefficient 2(¥) (¢, 1) is a solution of the equation

(k)
d(k) k .
Z [(Zz Yo' e ftm)| 5 Plg=0. (1)

Here, by square brackets with the upper index (¥} we denote the coefficient
of the term with £* in the power expansion of the function F with respect
to €. Write the equations (1.5) for £ > 1 in the form

dz(K)

= At 2P+ PO ), W], =0, (1.6)

Here we put by definition
Ap) = Fu(z0m),4,0, £t 1), (1.7)

k—1 (k)
F® (£, p) [F(Z 2Ot ) €, t, af(t,u))] :
1=0

F, is a Jacobi matriz of partial derivatives of the vector F' with respect to
components of the vector z. The function F(*)(t, ) depends on z(®)(¢, u),
, 27D (¢, ), k> 1
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The problem (1.6) is linear. Its solution has the form

¢
B (t, ) = /U(t,s,p)-F(k)(s,,u) ds. (1.8)
0
Here Ul(t, s, p) is the Cauchy matriz of the variational equation
g
= Alt) €. (1.9)

(A Cauchy matrix U(t, s, p) is the fundamental matrix of the system (1.9).
It equals the identity matrix when t = s: U(s, s, p) = E).
When p = ¢, the expansion (1.3) takes the form

z(t,e) = 3 2B)(t,€) ek, (1.10)
k=0

In Theorems 2.1-2.4 below we prove that the series (1.10) converges to the
solution of the problem (1.1). Under conditions of Theorems 2.5-2.8, the
series (1.10) is an asymptotic expansion for the solution of the problem

(1.1):

e(t,e) ~ 3 2B (t,€) eF (1.11)
k=0

(see in Subsection 2.2 the definition and notation for an asymptotic expan-
sion).

Thus, in order to find the solution in the form (1.10), (1.11) we must
know the zero approximation z(®)(¢,u) of the solution and the matrix
U(t,s,p). Then we can successively compute the coefficients of the expan-
sions (1.10), (1.11) for k =1, 2, .. .using the formulas (1.8).

In some cases the following theorem helps to find the Cauchy matrix
explicitly.

Theorem 1.1. (Poincaré [4]) If the general solution g(t,C) of the differ-
ential equations

dz

dt
is known (C' is a vector of arbitrary constants), then the Cauchy matriz of
the system

= F(,1) (1.12)

4¢ _ (1)
o = P21, 1) ¢
has the form
9 0
Ul(t,s) = U.(t) - U (s), Ul(t) = (a—gl ﬁ) S
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Here z(%)(t) is a partial solution of the problem (1.12) and C® is a constant
corresponding to this partial solution: g(t,C°) = z(©)(¢).

In (1.12) the functions and the solution may depend on parameters.
Thus, the Cauchy matrix U(t, s, p) for the equation (1.9) can be found if
we know the general solution of the equation (1.4).

1.3. REDUCTION OF THE NONZERO INITIAL VALUES PROBLEM
TO (1.1)

Now we are going to show how to reduce the problem

dz.  ~ . ~ ~ s

= =F@E e f(te),  Flimo=3() (1.13)
to the problem (1.1). (Suppose all the operations make sense). If the initial
values are smooth, then the degenerate problem for (1.13) has the form

dz0)
dt

Let us introduce new variables

=F(EO 4,0, ft,pm), 790 = 7°(0). (1.14)

z=7—20(te) — () + °(0). (1.15)

From Egs. (1.13), (1.14) it follows that z is the solution of the problem
(1.1) with

F(z,t,e, f(t,e)) = ﬁ’(m+3(0)(t,s)+i°(5) - z°(0), t, ¢, f(t,s))

—F(29(t,2),1,0, f(t,2)) (1.16)

This completes the proof. Note that if the function f can be expressed via
70 £ that is, if

Fz,te f(tw) = F(o+20(p) +3°() - 7°0), t,e, f(t, 1))
—F (20, p),1,0, f(t, ),
then (1.13) takes the form of the problem (1.1) with the condition
F(0,t,0, f(t,n)) = 0

(see Condition 2.1). In this case the zero approximation of the solution of
the problem (1.1) is trivial: 2(9(t,e) = 0 (2(9)(¢, u) is the solution of the
problem (1.4)).



