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Preface

This book replaces our Theory of Evolution and Dynamical Systems, which
was published in 1988 and has been reprinted several times. It now deserves
to be put to rest.

The present text, which is totally restructured and contains a lot of new
material, is no longer an interdisciplinary exploration but a tightly orga-
nized mathematical textbook on replicator dynamics and Lotka—Volterra
equations.

Two important developments during the last decade have made it imper-
ative to write this new book. Within the social sciences, game theory has
gained a lot of ground; and within game theory, evolutionary and dynamical
aspects have exploded. In our former book, it took us 150 pages of biological
motivation to tentatively introduce the notion of a replicator equation. This
is no longer warranted today: replicator dynamics is a firmly established
subject, and it has grown so tremendously that our old volume definitely
looks dated today.

It was exciting for us to see how many mathematical results obtained
within the last decade could now be added to the curriculum. Of course,
we had to economize elsewhere. This meant that the chapters on ecology,
genetics and sociobiology which introduced the biological ideas underlying
the mathematical models had to go. No regrets! All these aspects have been
covered by one of us, in more readable form and for a general audience,
in the Penguin book Games of Life. But we have kept to the principle of
introducing every new aspect of replicator dynamics by a simple example of
basic importance.

The need for a dynamical approach to game theory was felt by John von
Neumann and Oskar Morgenstern already. In fact, one can argue that the
very term of moves of a game suggests motion already. The static ‘solutions’
of classical game theory obtained by analysing the behaviour of ‘rational

xi
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agents’ are fairly unrealistic. *E9s piabold o
W Such stepw1se adaptatlon can occur through

. , pieawkseievsen. [t is no coincidence that
the s1ng1e most dec1swe 1mpetus for evolutlonary game theory came from a
theoretical biologist, namely John Maynard Smith. This was not the only
impetus, of course. With hindsight, it was understood that John Nash (a
winner of the Nobel prize in 1994) had a population dynamical setting in
mind when he conceived his equilibrium notion, and that Reinhard Selten
(who shared that prize) had taken, with his principle of the trembling hand,
an essential step away from the rationality doctrine.

Dynamical models, like the method of fictitious play by Brown and Robin-
son or the replicator equation introduced by Taylor and Jonker, were orig-
inally used as tools for studying equilibria. But during the last few years, it
has become increasingly clear that the analysis of equilibria cannot be nearly
enough. '

This book approaches game theory as a branch of dynamical systems. The
first part, accordingly, sets up the dynamical framework by an elementary
study of Lotka—Volterra equations, which form the backbone of ecological
modelling and are equivalent to replicator equations. The second part, which
is the core of the book, offers a systematic introduction to non-cooperative
games via replicator dynamics and many other game dynamics. Part three
explores the global properties of replicator dynamics, and in particular the
notion of permanence. Part four turns to genetics and investigates, in par-
ticular, the connection between the strategic approach of evolutionary game
theory and the genetic mechanisms of selection, mutation and recombination.

The book is divided into chapters and sections. The theorems and exercises
are referred to by their sections, and numbered consecutively. Many results
are given in the form of exercises. '

We are indebted to E. Akin, E. Amann, A. Arneodo, U. Berger, K. G. Bin-
more, I. Bomze, P. Brunovsky, R. Biirger, C. Cannings, F. B. Christiansen,
J. E. Cohen, R. Cressman, P. Coullet, T. Czaran, O. Diekmann, U. Dieck-
mann, M. Eigen, I. Eshel, H. I. Freedman, B. Garay, A. Gaunersdor-
fer, S. A. H. Geritz, K. P. Hadeler, W. H. Hamilton, P. Hammerstein,
W. G. S. Hines, V. Hutson, V. Jansen, Y. M. Kaniovski, G. Kirlinger, M. Koth,
M. Krupa, Y. A. Kuznetsov, R. Law, O. Leimar, S. Lessard, K. Lindgren,
M. Lipsitch, D. O. Logofet, V. Losert, R. M. May, J. Maynard Smith,
J. A. J. Metz, P. Molander, D. Monderer, T. Nagylaki, J. Nash, S. Nee,
M. A. Nowak, G. Parker, M. Plank, M. Posch, D. Rand, K. Ritzberger,
K. H. Schlag, P. Schuster, R. Selten, H. L. Smith, J. W. H. So, P. F. Stadler,
Y. M. Svirezhev, J. Swinkels, E. Szathmary, Y. Takeuchi, B. Thomas, J. van
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Baalen, E. van Damme, P. van den Driessche, G. T. Vickers, P. Waltman,
J. Weibull, F. Weissing, P. Young, E. C. Zeeman and M. L. Zeeman for

helpful discussions.
M. Posch deserves our special thanks for producing the figures and helping

with TEXnical questions.



Introduction for game theorists

The decline and fall of the rational player

Evolutionary game theory has been a latecomer in the evolution of game
theory. The initial aim of game theorists was to find principles of rational
behaviour, by means of thought experiments involving fictitious players
who were assumed to know such a theory, and to know that their equally
fictitious co-players would use it. At the same time, it was expected that
rational behaviour would prove to be optimal against irrational behaviour
too. It turned out that this was asking for too much.

The fictitious species of rational players reached a slippery slope when the
so-called ‘trembling hand’ doctrine became common practice among game
theorists. According to this eminently sensible approach, a perfect strategy
would take into account that the co-player, instead of being a faultless demi-
god, occasionally does the wrong thing. How often is ‘occasionally’, one may
ask, and what does it matter whether the players lucidly conceived the right
move but failed to implement it? From allowing for an infinitesimal margin
of error to assuming that the faculties of the players are limited, it takes only
a small step; and once the word of ‘bounded rationality’ went the round,
the mystique of rationality collapsed. It was like observing that the Emperor
was only boundedly covered by his new clothes. '

For game theory, the rout of the rational players proved an unmixed bless-
ing. It opened up a vast realm of applications in the social sciences ranging
from ethics to economics, and from political affairs to animal behaviour. As
soon as players were no longer constrained to be rational, they could learn,
adapt, and evolve.

It became a major task of game theory to describe the dynamical outcome
of model games defined by strategies, payoffs, and adaptive mechanisms,
rather than to prescribe ‘solutions’ based on a priori reasoning. The simplest

xiv
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examples showed that it could not be taken for granted that dynamic
adaptations would always lead to stationary solutions.

John von Neumann

Let us start with a highly simplified version of Poker. Suppose that there
are only two players in the game, say Johnny and Oscar, and two cards,
for instance an Ace and a King. At the start, both players pay one dollar
into the pot. Then Johnny draws a card, and looks at it. e now has the
option of folding (in which case Oscar gets the pot) or of raising the stakes
by adding one dollar to the pot. Now it is Oscar’s turn. Oscar, who does not
know Johnny's card, can either fold (thereby losing his original dollar) or
add one further dollar to the pot. In this case, Johnny has to show his card.
If it is the Ace, he wins the pot; if it is the King, Oscar does.

Each player has two strategies. Johnny may as well decide in advance what
he is going to do, before even looking at his card. He can chose between
two strategies, which we call ‘bluff” (raise the stakes no matter which card is
drawn) and ‘no bluff’ (raise only if the card is an Ace). Oscar, who has to
act only if Johnny raised the stakes, can also decide in advance what to do:
he can chose between ‘call’ (add a dollar if Johnny did) and ‘no call’.

The outcome is uncertain, since it depends on the card Johnny draws. But
the expected payoff for Johnny is easy to compute in every case. If he choses
‘no bluff’ and Oscar choses ‘call’, for instance, then Johnny’s expected payoff
is fifty cents. Indeed, with probability 1/2, Johnny will draw the Ace, raise
the stakes, and win 2 dollars. With probability 1/2, Johnny will draw the
King, fold, and lose 1 dollar. The payoff for Johnny is encapsulated in the
following matrix. Note that what one player wins is what the other loses:
this is a zero-sum game.

if Oscar calls if Oscar does not call

if Johnny bluffs 0 1
if Johnny does not bluff 1/2 0

Clearly, if Johnny never bluffs, Oscar should never call. But if Johnny can
count on Oscar never calling, he will always bluff. Of course, Oscar should
wise up and start always calling. But then, Johnny should stop bluffing
altogether, etc. The players will quickly start to use random strategies, and
bluff (or call) with certain probabilities only.

Let x be the probability that Johnny bluffs, and y the probability that
Oscar calls. Johnny’s expected payoff is x+y/2—(3/2)xy. Suppose he choses
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an x > 1/3. If Oscar can guess this, he will certainly call, and thus minimize
Johnny’s payoff to (1 — x)/2, a number less than 1/3. If Johnny bluffs with
a probabilty x < 1/3, however, then Oscar, if he can guess this, won'’t call,
thereby minimising Johnny’s payoff to x, which again is less than 1 /3. But
if Johnny bluffs with a probability exactly equal to 1/3, then he will have
an expected gain of one-third of a dollar, no matter what Oscar does. Thus
Johnny has found a way of maximising his minimal payoff. Oscar can do just
the same. If he choses y = 2/3, he can guarantee that Johnny gains not more
than one-third of a dollar, on average. Every other value of y would allow
Johnny to get away with more — if he manages to guess it. The strategies
given by x = 1/3 and y = 2/3 are maximin strategies — the best if one
assumes the worst. But why should one always assume the worst?

Suppose that Johnny, for instance, is a timid person and does not dare
to bluff with a probability as high as x = 1/3. He will not be penalized for
deviating from the right probability, as long as Oscar keeps to his equilibrium
value y = 2/3. And Oscar will not be penalized either. Of course he would
be better off if he switched to calling less frequently. The right reply for
Johnny, in that case, is not to meekly reassume his maximin strategy, but to
overcome his timidity and switch all the way to always bluffing. Thus the
maximin solution seems a rather spurious equilibrium. If Johnny deviates
from his maximin strategy, he is not led back to it. Rather it is Oscar who
is led to deviate too.

John Nash

The maximin solution is used, not just for this simplified version of Poker,
but for all zero-sum games where the gain of one player is the loss of
the other. But most games are not zero-sum. Consider the following game,
usually called Chicken: Johnny and Oscar have the option to escalate a
brawl or to give in. If both give in, they get nothing. If only one player gives
in, he pays 1 dollar to the other. But if both escalate the fight, each has an
expected loss of 10 dollars, say, for medical treatment. The payoff matrix for
Johnny is given by the following matrix:

if Oscar escalates if Oscar yields

if Johnny escalates —10 1
if Johnny yields -1 0

Clearly, by giving in, Johnny can maximize his minimal payoff. Oscar is
in the same position: he also could maximize his minimal payoff by giving
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in. But will both players give in? Hardly so. If they guess that the other will
give in, they will certainly escalate. But if both escalate, both are worse off.

If x and y are the probabilities that Johnny and Oscar escalate, then
the expected payoff for Johnny is —10xy 4+ x — y. If Oscar escalates with a
probability larger than 1/10, Johnny should quit. If Oscar escalates with a
probability smaller than 1/10, Johnny should escalate. If both Johnny and
Oscar escalate with a probability of exactly 1/10, they are in a Nash equilib-
rium: neither of them has anything to gain by deviating unilaterally from his
equilibrium. But neither Johnny nor Oscar has any reason not to deviate from
1/10, either, as long as the other sticks to 1/10. Oscar has no reason to care
one way or the other, as long as Johnny escalates with a probability of 1/10.
But if Johnny has any reason for believing that Oscar escalates with a higher
probability, he should never escalate; and if Oscar suspects that Johnny has
such a reason, then he should certainly escalate. What should Oscar do,
for instance, if Johnny has escalated twice in the first five rounds? Should
he conclude that this was a statistical fluke? Even if it were such a fluke,
Johnny could reasonably suspect that Oscar would attribute it to a higher
propensity to escalate. Again, the argument for 1/10 looks rather spurious.

John Maynard Smith

Oddly enough, it was a biologist who offered a convincing explanation. John
Maynard Smith, who was studying animal contests at the time, viewed the
Chicken game in a population-dynamical setting. There were no longer just
Johnny and Oscar engaged in the game, but a large number of players
meeting randomly in contests where they had to decide whether to escalate
or not. It makes a lot of sense, now, to assume that the players escalate
with a probability of 1/10. Indeed, if the overall probability were higher,
it would obviously pay to escalate less often, and vice versa. In this sense,
self-regulation leads to the value of 1/10 — self-regulation, not between two
players, but within a population.

The value 1/10, then, is an example of an evolutionarily stable strategy. It
is the result of a population-dynamical approach which considers questions
like: When will the frequencies of certain strategies increase? When will they
reach a stable equilibrium?

Enter ecology

Such self-regulation is reminiscent of the self-regulation encountered in pop-
ulation ecology. Interacting species can regulate their population densities.
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A scarcity of prey, for instance, will cause a population of predators to
dwindle; as a result, the number of prey will increase. This, in turn, will
cause the frequency of predators to increase, eventually leading to a decline
in the prey, etc. This looks a lot like the up and down of the frequencies of
calling and bluffing in Poker.

On second thoughts, it therefore appears considerably less surprising
that a biologist would approach game theory with population dynamics in
mind. It comes quite natural to naturalists to think of self-regulation via
frequency dependence. This is a long-established theme among ecologists.
Charles Darwin had already been thrilled by this dynamical aspect. He
relished working out how, if ‘certain insectivorous birds were to increase in
Paraguay’, a species of flies would decrease; how — since these flies parasitize
newborn calves — this decrease would cause cattle to become abundant;
which ‘would certainly greatly alter the vegetation’; and ‘how this again
would largely affect the insects; and this again the insectivorous birds ...
and so onwards in ever-increasing circles of complexity.” The mathematics
underlying this complexity is the theory of dynamical systems.

Evolutionary game theory proved very popular with economists who had
not felt too comfortable with the classical approach of analysing the be-
haviour of unboundedly rational players. It even led to a modest revival of
rationality; it turned out more than once that the prescriptions for rational
play agreed with the outcomes of game dynamics. And in retrospect, it was
even discovered that John Nash had had a population setting in mind when
he introduced his equilibrium notion. In his unpublished thesis he wrote ‘it
is unnecessary to assume that the participants have ... the ability to go
through any complex reasoning processes. But the participants are supposed
to accumulate empirical information on the various pure strategies at their
disposal .... We assume that there is a population ... of participants ...
and that there is a stable average frequency with which a pure strategy is
employed by the “average member” of the appropriate population’.

This mass action interpretation foreshadows the population dynamical
point of view of evolutionary game theory by more than twenty years.
Why was it not pursued for such a long time? One possible reason is that
evolutionarily stable equilibria do not always exist (whereas Nash equilibria
do). It may well be that the adaptation process between players does not
converge to a standstill. But the self-regulation of population densities in an
ecosystem needn’t converge either. The possibility of chaotic population os-
cillations was understood at about the same time as the ideas of evolutionary
game theory started spreading.

One may safely conclude that ecology is the godfather of evolutionary
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game theory. We stress this theme throughout our book. The most com-
mon models for the dynamics of population numbers in ecosystems (the
Lotka—Volterra equations) and the most common models for the dynamics
of frequencies of strategies (the replicator equations) are mathematically
equivalent. It pays to study them together. ‘
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Striking a balance

If we repeated Noah’s experiment — starting a new ecosystem with one
couple of each species — we would certainly not expect a restoration of
the old régime. Numbers matter. The fate of a population depends on the
frequencies of other populations.

The interdependency of different species can be wonderfully intricate.
Darwin relished working out ‘how plants and animals, most remote in the
scale of nature, are bound together by a web of complex relations’, pointing
out, as an instance, that bumble-bees are indispensable to the fertilization of
heartsease, and that field-mice cause havoc among the nests and combs of
bumble-bees. Since the number of mice is largely dependent on the number
of cats, it is consequently ‘quite credible that the presence of a feline animal
in large numbers might determine, through the intervention first of mice and
then of bees, the frequency of certain flowers!”

This self-regulation of population frequencies has been a dominant theme
of mathematical ecology. It started in the 1920s with Alfred Lotka mod-
elling the cycle of mosquitoes and humans in transmitting malaria, and Vito
Volterra analysing the dynamics of predators and prey among fish in the
Adriatic. They came up with differential equations describing the dynamics
of such systems. But the first generations of mathematical ecologists con-
centrated mostly on investigating static aspects of ecological communities.
Some of their main problems, like the validity of the exclusion principle
(when can there be more species than niches?) and the relation between the
complexity and the stability of an ecosystem (do species that are more inter-
connected produce assemblies that are more robust?), were phrased in terms
of stability properties of equilibria. Only in the 1970s did the prevalence of
irregular oscillations, which had always been known to field workers, filter

XX
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down to theoreticians. Ecological models became a major impetus to chaos
theory.

Survival vs. equilibrium

For a long time, the efforts of mathematical ecologists to analyze the stability
of bio-communities were marred by a misunderstanding. If one simply
adopts the stability concepts of physicists or engineers, then one will call an
ecosystem stable if population numbers converge to an equilibrium which
is promptly re-assumed after every small perturbation. But field ecologists
would not expect to find, in the wild, the static, well-controlled state of
affairs implied by such a stability notion. For ecologists unspoilt by physics
courses, the proverbial lynx—hare cycle, whose undamped oscillations have
been recorded for two hundred years, epitomizes stability. They little care
whether the population numbers converge, or oscillate in a regular or chaotic
fashion. For such ecologists, stability means that population numbers do not
vanish; that the species making up the ecosystem do persist. Survival, not
equilibrium, is what counts. This second form of stability is one of the main
themes of our book.

All biological communities are transient, of course; but some are more
so than others. They collapse right away, without having to wait for the
construction of an interstate highway, the mutation of a parasitic strain,
or a series of harsh winters. They are doomed from the start: they are
unsustainable — that is, impossible in the long run. They do occur in nature,
but it is hard to make them out before they are replaced by less fleeting
configurations. Ecologists who wish to understand what happened have no
time for a leisurely post mortem. Yet they must know why communities fail
if they want to learn about those which persist. An empirical approach to
this question is always difficult and often painful; mathematical models are
less risky and, if they are cleverly set up, more revealing.

The history of ecological communities is chronicled in terms of invasions
and extinctions. The fate of a population depends mostly on what happens
when it is rare. Can an invader spread? Can a population recover after being
decimated ? Every new adaptation is initially rare, and every lineage has been
tested in countless bottlenecks. A population must be able to gain a foothold
when in a minority. It must be able to grow in a world which is essentially
determined by the others. Only then will its numbers become large enough
to affect the environment, the frequencies of the other species, and its own
growth. If we translate this into static notions, we find that we have to
investigate two types of stability for an equilibrium: inner stability (will a
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small perturbation of the prevailing distribution be offset by self-regulation?)
and outer stability (will a new population entering as a minority be able to
grow?). Obviously the same two questions apply to dynamic regimes, too: (a)
what happens if one adds or removes a few heads of a population currently
present in the ecosystem, and (b) what happens if one adds a few heads of
a new, intruding species?

Breeding and games

Every growth will of course eventually be checked. Darwin termed this the
‘struggle for life’, stressing that it often had little to do with animals actually
fighting each other. He compared the ‘face of nature’ to a yielding surface,
‘with ten thousand sharp wedges packed close together and driven inwards
by incessant blows.” And he emphasized that this struggle of life was almost
invariably most severe between individuals and varieties of the same species.

This suggests applying ecological modelling to animal behaviour, since
different types of behaviour correspond to different varieties. One of the
first to think about behaviour in terms of invasion and self-regulation
of frequencies was John Maynard Smith. He applied it originally to actual
contests within one species, using it to explain the prevalence of conventional
fighting. Stags, for instance, engage in roaring contests, a parallel walk and
a pushing match with interlocked antlers. Only rarely do they escalate to
an all-out fight likely to have a lethal conclusion. Their usual restraint is
obviously good for the species, but this advantage cannot explain it.

John Maynard Smith and John Price couched the contests in game the-
oretic terms. Stags, in their thought experiment, came in two brands: the
‘hawks’ ruthlessly escalating every contest, and the ‘doves’ sticking to con-
ventional displays and fleeing whenever their opponent gets rough. In a
population of doves, hawks do well and will spread, since they win all their
contests. But in a population of hawks, they have only a fifty per cent chance
of winning; it is just as likely that they will end up seriously injured. Doves,
who avoid this fearsome risk, will do much better and spread. Hence hawk
populations can be invaded by doves and vice versa; the outcome should be a
mixture where the frequency p of hawks is inversely proportional to the cost
of an injury (a cost expressed in fitness, i.e. reproductive success). Among
heavily armed species like stags, this cost is very high, so that escalated
conflicts will be rare.

A fighting behaviour corresponds in game theoretical terms to a strategy.
Hawks and doves are so-called pure strategies, and each is a best reply to the
other. The structure of the struggle is exactly that of a once popular pastime
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- of American teenagers, which went by the name Chicken and attracted the
~ interest of early game theorists. The thing to avoid, in such a game, is to act
like your adversary — but you do not know beforehand what he will do. It
turns out that it is best to let chance decide — if you know how to weight

f the dice properly.

Hedging the bets

What about mixed strategies in the hawk—dove game, i.e. behavioural pro-
grams telling the player to escalate with a such and such a probability? It
is easy to see that there exists one such strategy — namely escalating with
the probability p given by the frequency of hawks in a hawk-dove mixture
— which is a best reply to itself, a so-called Nash equilibrium. If all stags
use this mixed strategy, no stag can expect to do better by escalating with
a different probability. Actually, stags that do so will not do worse either.
Nevertheless, they cannot invade, and this for a rather subtle reason. The
offspring of the mutant (who inherit its propensity for escalation) do as well
as the resident population in all contests against the residents; but they do
less well than the residents in the (admittedly rare) contests against their
own. Hence their type cannot spread: it checks its own increase even when
rare.

A similar argument explains the prevalence of the sex ratio 1/2. If the
sex ratio (the proportion of males among the offspring) were different, it
would pay to produce offspring of the rarer sex. The success of one strategy
(produce more sons) or the other (produce more daughters) depends on
the mean sex ratio in the population, and hence on the frequencies of the
strategies. Success, as always in biology, means reproductive success; hence
the successful strategies spread, change the composition in the population,
and therefore affect their own success. Again, one can show that investing
equally in the production of the two sexes is evolutionarily stable. If everyone
does it, any deviation will be self-defeating, because it affects the frequencies
of the sexes in the wrong way.

The definition of an evolutionarily stable strategy (if the residents adopt
it, no mutant can invade) is based on an implicit dynamics. It is easy to
make this dynamics explicit, by assuming that like begets like. This yields the
replicator equation describing the evolution of the frequencies of different
strategies in a population. This dynamics is not merely a prop to sustain
arguments from equilibrium theory. For many games, equilibria alone do not
suffice to describe what happens, and a static outcome cannot be expected.
The simplest example is the rock—scissors—paper game, where strategy A4 is
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beaten by B, which is beaten by C, which is beaten by 4. There exists a mixed
equilibrium with so much of 4, B and C each. But it may happen that this
equilibrium is never reached. Instead, the cyclic succession of populations
which are almost entirely composed of 4, B or C builds up to an increasingly
jerky roundabout of upheavals.

It used to be thought that the rock—scissors-paper game was just a
conundrum devised for the amusement of theoreticians, until it was found
out that lizards do play it: one of their species, Uta stansburiana, has
three types of male with different mating strategies (they are conveniently
distinguished by their throat colour). Type A keeps one female and guards
it closely; type B keeps several females, and necessarily guards them less
closely; and C guards no female at all and looks out for sneaky matings
with unguarded females. The three types can invade each other cyclically.

Similar ratchets can occur in parasitology. The immune system of the host
acts as a combination lock which the parasites try to break. By trial and
error, they will eventually succeed. Of course they are usually most efficient
in attacking the most common immunotype in their host. For the host, it
can be deadly to adopt a combination code which is currently widespread in
the population. It pays to belong to a minority. But since it pays in offspring
— the Darwinian currency — such a minority will yield a new majority, and
come under concentrated attack. Every solution is self-defeating in the long
run. This leads to arms races without a finish line.

Short vs. long term

In studying evolutionary chronicles, we are led to consider two time scales.
Short-term evolution describes how the frequencies of adaptive traits regu-
late each other via natural selection, i.e. how the distribution of the types
actually present in a population changes from generation to generation.
Long-term evolution describes how new types can invade through mutation.
Not surprisingly, this leads to rather different dynamics, and hence also to
different stability notions. In particular, an evolutionarily stable strategy need
not attract. It may well be that a population is invasion-proof in the sense
that mutations cannot lead out of it, and at the same time inaccessible, so
that mutations will lead any nearby populations further away from it. Such
‘Garden of Eden’ configurations can never occur as evolutionary outcomes.
The widespread idea that a population will somehow evolve until it happily
reaches the safe haven of evolutionary stability is not always valid. The
dynamics of evolution can be a lot more exciting.

Replicator dynamics and adaptive dynamics describe the short-term and




