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PREFACE

This book was written at the recommendation of Professor M. Horowitz of the
Weizmann Institute, Rehovoth, Israel and the University of Colorado, U.S.A. It is
based on a lecture course on the theory of automatic control systems with variable
structure, or variable-structure systems (VSS), presented by the author at the Feinberg
School of the Weizmann Institute. The purpose of the book is to acquaint English-
speaking control theorists and engineers with the elements of the theory of VSS,
which has developed over the last fifteen years almost exclusively in the USSR,
its main exponents there being Professors S. Emel’yanov (Moscow) and E. Barbashin
(Sverdlovsk) and their co-workers.

As evidenced by their name, variable-structure systems differ from traditional
automatic control systems in that their structure is purposefully changed, in jump-
wise fashion, during the transient process, depending on the current value of the
error signal and its derivatives. Research has shown that VSS possess several essential
advantages, among these high speed, insensitivity to variationsin the plant parameters
and to external disturbances, and simplicity of physical realization.

The bulk of the book is concerned with the theoretical study of VSS (first and fore-
most, their stability), but we also describe block-diagrams of physical devices im-
plementing the various control laws.

Though we do not claim to provide an exhaustive account of all results achieved
in the theory of VSS, the material should give a fairly complete picture of its funda-
mental ideas and methods. The interested reader may draw additional information
from the papers and books listed in the bibliography, which is fairly exhaustive.

The author owes his original acquaintance with the theory of VSS to Professor
S. Emel’yanov. He is deeply indebted to Professor L. Segal of the Weizmann Institute
for his assistance in publishing this book. A. Leibovich rendered invaluable help
in the preparation of the manuscript.

U. Itkis



INTRODUCTION

The main distinctive feature of VSS, setting them apart as an independent class of
control systems, is that changes can occur in the structure of the system during the
transient process (this is indicated in the term “VSS™). The structure of a VSS is
changed intentionally, in accordance with some preassigned algorithm or law of
structural change; the times at which these changes occur (and the type of structure
formed) are determined not by a fixed program but in accordance with the current
value of the error signal and its derivatives (this distinguishes VSS from programmed
controllers).

The changes that can be introduced in the structure of the system during the
transient open up wide new vistas for the control designer, primarily because by
changing the structure of the system he can resolve the conflict, typical for automatic
control systems, between static accuracy (stability, noise immunity) and speed of
response (dynamic accuracy).

A simple example will illustrate the situation. It is well known that if the control
law employs integral control the system has no steady-state error in response to
a step input; besides, this improves the speed of response of the system, which is
undoubtedly desirable. On the other hand, if the gain of the integrator is sufficiently
high, overshoot will occur, increasing sharply as a function of the gain; this is highly
undesirable. In the absence of integral control, one can (as a rule) sharply increase
the gain of the closed-loop system and thereby improve the system response. How-
ever, the system will then display a steady-state error. Thus the control designer is
obliged to reach some compromise, making the control (correcting effort) a linear
combination :

t
u(t) = K;x(t) + K, f x (1) dt, 0.1)
0 ;
where x(t) is the error signal and the gains K,, K 2 are given some “average” value
which guarantees satisfactory response and not too large oscillation (overshoot)
in the system. Of course, this compromise does not eliminate the conflict between
the static and dynamic accuracy of the system; it merely enables the designer to
“reconcile himself” to it.
On the other hand, the conflict may be resolved (“circumvented”) by employing

vii




viii INTRODUCTION

the principle of variable structure. It is intuitively clear that if the control law applied
at the first stage of the transient (as long as the error is sufficiently large) is chosen
as

ug(t) = K'x(t) for |x(1)| > e, 0.2)

where ¢ > 0 is some constant, but at the final stage (when the error is small) the control
law is

uy(t) = K" f x(t) dt, (0.3)

where |x(t)| < ¢ for t Z t,, then, if the parameters K’, K", ¢ are suitably selected, one
can ensure a high-quality transient response, distinguished by good dynamic and
steady-state characteristics. Indeed, taking K’ sufficiently large, we make sure that
the speed of the system is high. Thus the error x(t) in response to a step input rapidly
“enters the tube” |x(f)| < &. At the instant ¢, when the error has fallen to &, the struc-
ture of the system is changed* by switching to an integral control (0.3), which elim-
inates the steady-state error remaining in the system (Figure 0.1).F

One could cite a host of other examples illustrating the potentials of variable
structure as a means for improving the transient (see, e.g., Chapter I). But it is in-
tuitively clear a priori that variable-structure systems offer far more possibilities
than systems with fixed structure, if only because the latter constitute a special case
(subclass) of VSS.

In principle, there are many different possible control laws governing the changes
of system structure. One can switch on (or cut off) primary feedback, local feedbacks,
additional derivative connections, cross couplings, and so on. Historically speaking,
however, one specific type of control law from this almost unlimited supply has
received most attention in the theory of VSS: laws producing in the system what is

Xy

Fig. 0.1

* The inclusion of integral control action is equivalent to inserting an additional component into the
system, with transfer function 1/s, and hence to changing the structure of the system.
1 This assertion can be proved analytically.




INTRODUCTION ix

known as a sliding regime, in which the structure of the system is changed at infinite
frequency.* The reason for the over-riding interest in sliding regimes lies in their
many advantages, foremost among these being that motion in a sliding regime is
insensitive to variations in the plant parameters and to external disturbances. The
motion of a VSS in a sliding regime is equivalent to the motion of a certain new
system, with a fixed structure differing from any of the structures on which the design
of the original VSS is basedT (it is even possible to obtain a high-quality stable equiva-
lent structure in a VSS synthesized from several unstable structures). In most cases,
organization of a sliding regime resolves the conflict between the static and dynamic
accuracy of the system, for it enables one to split the transient into two independent
stages: a brief motion up to the beginning of the sliding regime (known as “hitting”),
characteristic of which is a high rate of decrease in the absolute value of the error,
and an unlimited period of motion in the sliding regime, characterized by rapidly
damped oscillations (and independence of the plant parameters and the external
disturbances). It is only natural that this book too is concerned primarily with the
question of whether a sliding regime can be guaranteed in a VSS and with the study
of its properties, insofar as our goal is to present the main achievements of the theory
as they stand today.}

The guiding principle in our exposition is gradually to increase the complexity
of the structure-control laws discussed. Thus, in Chapter I we present simple examples
of second-order VSS, illustrate the increase in the quality of control achieved by
varying structure, either in a sliding regime or in a low-frequency switching regime,
and of course define the concept of a sliding regime in mathematical terms. In Chapter
II a detailed study is made of the dynamics of VSS of arbitrary order with constant
and variable plant parameters, when the control law provides for changing the sign
and magnitude of the primary feedback in the system. In Chapter III we describe
methods for improving the quality of control in the systems investigated in Chapter
II by switching derivative connections in addition to primary feedback. Chapter
IV presents control laws which implement simultaneous switching in three types
of coupling: primary feedback, derivative connections and local feedbacks in the
actuator; because of this, these laws produce a transient which is not only insensitive
to changes in the plant parameters (for plants of arbitrary order), but is also invariant
under external disturbances. Chapter VI describes efficient laws for control of cross
- couplings in multiconnection systems and centralized-control systems, and also

* Theoretically, of course; in practice, the frequency must be made sufficiently high, depending directly
on the response characteristics of the switching devices.

T The type and parameters of this new equivalent structure may be chosen by suitable selection of the
control algorithm.

1 The present-day theory of VSS displays a tendency to intensify research into “ordinary” regimes, in
which the frequency of structural changes is fairly low.




x INTRODUCTION

for control of connections of general (arbitrary) type in variable-structure multi-
variable systems. The seventh and last chapter considers the organization of an
optimal transient process in a VSS by adaptation (self-adjustment) of the controller
parameters, based on incoming information about the sequence (order) and fre-
quency of structural switchings in the system.

In regard to the dynamics of all the VSS considered in Chapters I-IV and VI,
VII, we shall assume that the controller is ideal and not subject to noise, so that
there may exist in the system an ideal sliding regime with infinite frequency of struc-
tural switchings. In a real VSS an ideal sliding regime cannot exist. Nevertheless,
it will be shown in Chapter V that, despite imperfections (such as hysteresis, insensitive
zones, time lag, gain instability, pulse-amplitude and pulse-width modulation of the
control signal) and noise in real VSS, there exists a high-frequency switching regime
(called a quasi-sliding regime) whose properties approximate those of an ideal
sliding regime, this approximation being better, the smaller are the imperfections
and the lower the noise level.

5 ith 43
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Chapter One
INCREASE IN CONTROL PERFORMANCE
DUE TO VARIABLE STRUCTURE

1.1. EXAMPLES OF SYNTHESIS OF FAST-RESPONSE STABLE VSS
BASED ON UNSTABLE STRUCTURES

Automatic control systems of variable structure (VSS = variable-structure systems)
constitute a special class of nonlinear control systems. As evidenced by their name,
these systems differ from other control systems mainly in that their structure is not
constant but is varied during the control process. Unfortunately, it is at present
impossible to give a rigorous definition of the concept “VSS,” not only because the
theory is still comparatively young but also because there is no really rigorous defi-
nition of “structure.” Nevertheless, there seems to be unanimous agreement that
the structure of a system with positive feedback is not the same as that of a system
with negative feedback (even when the components of the systems are the same, as
are all other couplings). Similarly, the structure of a system with negative feedback
is different from that of an open-loop control system.

We shall therefore assume throughout this book that two systems which differ
in the sign of the coupling between at least two of their elements, or in which there
are two elements connected in one system and unconnected in the other, have dif-
ferent structure. Later we shall make the term “different structure” more specific.

Generally speaking, the structure of a control system may change either acci-
dentally (for example, owing to sudden breakdown of the actuating mechanism the
feedback loop may be broken) or regularly, in conformance with a definite rule.
The VSS considered in this chapter fall into the category of systems with changeable
structure—systems whose structure is intentionally changed during the transient
in accordance with a preset structure-control law. The control laws developed in
the theory of VSS usually provide for changes in the structure of the system when-
ever the representative point crosses certain surfaces (hypersurfaces) in the phase
space of the system. The form of these surfaces depends essentially on the type of
plant. Essentially, the theory of VSS is the theory selecting rational (for a specific
plant) switching surfaces and structures in the regions of the phase space that they
define. It is only natural that a systematic exposition of the theory should begin
with the simplest case: second-order phase space, i.e., a phase space adequate for
describing the dynamics of second-order systems.

We briefly recall the fundamental types of phase portraits of second-order systems,

1



2 CH. 1. INCREASE IN CONTROL PERFORMANCE

limiting ourselves to linear systems with constant parameters, whose free motion
is described by an ordinary differential equation:

X 4+ ax + a;x =0, (1.1.1)

where a, is the damping coefficient and a; the gain of the error signal x. There are
several possible phase-portrait types for equation (1.1.1), depending on the relative
positions of the roots of the characteristic equation:

p* +ap +a, =0. (1.1.2)

The possible phase portraits are as follows:

1. Degenerate case: one of the roots of the characteristic equation, say 4,, is zero,
the other (4,) negative (it is clear that in this case a; = 0, a, > 0). The phase trajec-
tories (Figure 1.1.1a) are straight lines with slope —a,, and there is a unique line
through the origin along which the motion of the representative point is asymptotical-
ly stable. If the representative point is not on this line at the initial point of time, the
system will display a steady-state error.

2. A4 =0, A, > 0. The phase trajectories (Figure 1.1.1b) are again straight lines,
but of positive slope. The system is unstable.

3. The roots are real, negative and distinct, say 4; < 4, < 0. The phase trajectories
(Figure 1.1.1c) are parabolas, with two asymptotes: o, = X + 4;x =0, 0, = % +
Ax = 0. The system is globally asymptotically stable (whatever the initial position
of the representative point in the phase plane).

4. The roots are real, negative and equal, A, = 4, = A < 0. The phase trajectories
(Figure 1.1.1d) are again convergent parabolas, but there is only one asymptote,
g=%+ ix =0.

5. The roots are complex, with negative real parts: Re 1;, Re 1, < 0. The phase
trajectory’ (Figure 1.1.1e) is a spiral. The system is globally asymptotically stable
(oscillatory).

6. The roots are pure imaginary, Re 4, = Re 1, = 0 = a, < a,. The phase trajec-
tories (Figure 1.1.1f) are ellipses. If a; > 1, the ellipses are elongated along the vertical
axis (Figure 1.1.1f), if a; < 1—along the horizontal axis (Figure 1.1.1g); if a, = 1,
the phase trajectories are circles (Figure 1.1.1h). The system is conservative.

7. The roots are complex, with positive real parts: Re 4; > 0 < Re 4,. The phase
trajectories (Figure 1.1.1i) are expanding spirals. The system is oscillatorily unstable.

8. The roots are real, positive and distinct: 4; > 4, > 0. The trajectories are para-
bolas (Figure 1.1.1j). There are two asymptotes, X + A;x =0, X + A,x = 0. The
system is aperiodically unstable.

9. The roots are real, positive and equal: 4, = 4, > 0. Same as the preceding case,
except that there is only one asymptote (Figure 1.1.1k).

10. The roots are real and of unlike signs, 4, < 0 < 22. The phase trajectories
are hyperbolas (Figure 1.1.11) with two asymptotes, o, = X + i,x = 0, 0, =X+
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4 CH. L. INCREASE IN CONTROL PERFORMANCE

A;x = 0. The slopes are different, depending on the relationship between A, and
4,. The system is unstable, but there is a unique phase trajectory (6, = X + A,x = 0)
along which the representative point moves asymptotically to the origin. This dis-
tinctive existence of a single stable trajectory should be emphasized; we shall use
it essentially in various VSS.

Each of the above portraits corresponds to a certain system structure. It is generally
agreed that the elliptic structure of Figure 1.1.1f and the hyperbolic structure of
Figure 1.1.11 are distinct. However, opinions differ as to whether elliptic structures
in which the ellipses are “compressed” to different degrees are to be considered
distinct. The same question may be posed for hyperbolic structures with differently
situated asymptotes, for parabolic structures, etc. We shall see below that as far
as the theory of VSS is concerned it is often convenient to stipulate different struc-
tures for “elliptic” systems whose ellipses have different eccentricities; one reason
for this is that by using the difference between the eccentricities of the ellipses one
can significantly improve the quality of the transient by stepwise changes in the
coefficient a, (i.e., in the structure of the system).

Variable-structure systems offer the control designer new possibilities for improv-
ing the quality of control in comparison with fixed-structure systems, since the wider
range of control actions implies a larger range of admissible transient processes
in the system. In fact, VSS may have transients which are quite unrealizable in
fixed-structure systems. This includes the possibility of synthesizing high-quality
stable VSS which combine unstable structures in a certain way.*

As an illustration, we consider a VSS controlling a conservative plant by switching
the sign of the feedback (Letov, 1957).1 The unchangeable part of the system con-
sists of two integrators connected in series. If the plant is part of a stabilizing negative
feedback loop (Figure 1.1.2a), the resulting control system will be conservative, and
its free motion is described by a second-order system of differential equations:

dx,

i
(1.1.3)
dx,

dr

= —a1Xy,

where x, is the difference between the reference input r and the output signal ¢ of
the system; a; > 0 is the gain (this system clearly corresponds to the differential
equation (1.1.1) with a, = 0, x; = x, so that the structure of system (1.1.3) is elliptic;
see Figure 1.1.2b). However, if the plant is included in a positive feedback loop

* There is an analogy here with reliability theory —synthesis of reliable systems from unreliable elements.
T Letov does not use the term VSS, but “conditionally stable optimal system”; essentially, however, this
is a typical representative of the class of VSS.
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(Figure 1.1.2¢), the system is aperiodically unstable and is described by the equations

dx,
F
(1.1.4)
ldxz +a
e _ %
dt 1-v1

(hyperbolic structure: Figure 1.1.2d). Neither of systems (1.1.3) or (1.1.4) is satis-
factory as far as the quality of the transient is concerned (if only for the fact that they
are unstable). Nevertheless, certain parts of the phase trajectories of both systems
are quite satisfactory. For example, the error of system (1.1.3) decreases rapidly
in the first quadrant of the phase plane (the region in which x;, x, > 0), and system
(1.1.4) has a “good” phase trajectory in the fourth quadrant (counting anticlock-
wise)—the asymptote of the family of hyperbolas. Let us try to combine the ad-
vantages of both systems (at the same time eliminating their shortcomings) by suitable
choice of their structure in the appropriate parts of the phase plane.
Divide the phase plane Z into four pairwise symmetric subregions:

RegionI: x;, =20, x,;+ \/a—1x1 > 0,
RegionII: x; <0, x, + \/a71x1 =0,
RegionIIl: x; =0, x, + \/le <0, (1.1.5)
RegionIV: x; >0, x, + \/le =0
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These regions are separated from one another by the straight lines x; = 0 and x, +
\/a—lxl = 0 (Figure 1.1.2¢). Suppose we can stipulate the structure of the system
(more precisely, exactly one of two possible structures: elliptic or hyperbolic) at
our discretion, at each point of the phase space.* We should then proceed as follows.
At each point of region I, we stipulate that the system include a negative feedback;
more precisely, we introduce negative feedback at the instant the representative
point (RP) enters this region, crossing the axis x; = 0, and do not change it until
the RP leaves the region, crossing the line x, + \/Zx 1 = 0. Ateach point of region IV
we introduce positive feedback. The structure in regions II and III is chosen by
symmetry considerations: hyperbolic in region II, elliptic in region III.

Suppose that the RP is in region I at the initial time t, = 0; thus a negative feed-
back is switched on at time ¢, and the RP will move along an ellipse in the clockwise
direction (Figure 1.1.2f). At a certain time ¢, > t, the RP will “hit” the line x, +
Vaix; = 0. At this time the RP is in region IV, so that the positive feedback must
come into action. Consequently, at time ¢, the RP begins to move along a hyperbolic
trajectory; however, since its position at time ¢, is on the asymptote of the family
of hyperbolas (the line x, + /a,x; = 0), it must move along this asymptote. While
itis doing so the structure of the system cannot change, since the RP remains through-
out in region IV. Thus the RP will continue indefinitely to move along the straight
line x, + /a;x; = 0, approaching the origin asymptotically. In this case, therefore,
we have lim x, (f) = lim x, (t) = 0.

t— o t— o

Now consider the case that the RP is in region IV at time t, = 0. In accordance
with the structural rule stipulated above, positive feedback must be switched in.
Hence the RP will move along an arc of a hyperbola, crossing the ordinate axis at
some time ¢, > t,. At this time ¢, negative feedback is switched in, and from then
on the process is similar to that considered above. Thus, in this case too we have
tlirg x.(t) = :h—-rgo x,(t) = 0, but the transient is now somewhat less satisfactory in

quality, since we have a case of overshoot (the sign of the error changes); true, this
occurs only once.

It is clear that if the initial position of the RP is in either of regions II or III the
behavior of the transient is completely symmetric.

Thus, the VSS under consideration is globally asymptotically stable and the
transient is either aperiodic or involves at most one overshoot—this for a system
synthesized from two unstable systems! Of course, the transient just described is
rather idealized, since in a real system unavoidable fluctuations may cause the RP
to move off the asymptote x, + \/a—lxl = 0, but it will subsequently move along
a trajectory sufficiently close to the asymptote (the question of whether a given VSS
is realizable will be studied in greater detail in the next section).

* We shall show later that this may indeed be done, using a relatively simple controller.
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The next example will again demonstrate the synthesis of stable VSS from unstable
structures. We again consider a conservative plant (two integrators connected in
series, as part of a negative feedback loop), whose motion is described by system
(1.1.3) with gaina, = aj < 1.

 For control of the plant we use one of the simplest types of variable-structure
controllers—the half-proportional controller of V. Ferner (1956), which operates
on the following principle: the control is proportional to the error signal if the latter
has the same sign as its rate of change (i.e., sign X = sign x); otherwise the control

is zero. The control law implemented by this controller is:
B kx if xx =0, (116
o if xx <O. 16)

This law clearly divides the phase space into four regions, separated by the coor-
dinate axes (Figure 1.1.3a). In the regions X, x = 0 (region I) and X, x < 0 (region III)
the control signal is u = kx, and the free motion of the VSS is described by the system

dx;
@
ix (1.1.7)
— =~ +kx,
X2 X2 X5
N\
u I /—\
£=] — N
X X ‘ \—/ Xy
\711 v K’J
N \
(a) b) <)
= r Xy a u 1 (7]
| + ! + 7 s
|
| ) T
ty tz\L—/t«t t
i k _J:’._

e)
Figure 1.1.3
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