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Abstract: These proceedings contain formal papers, updates on ASCE Guides, and the findings of
current research in the areas of design, analysis, maintenance, and operation of transmission line and
substation structures and conductor systems. The ten sessions cover design loads, structure reliability,
analysis, design, foundations, research, life extension, lifeline criteria, and line capacity. Updates of
ASCE #74 and TEC 60826 are provided on loading. Overviews on the following subjects are
provided: ASCE’s effort to develop a Manual of Practice for reliability-based structure design, the
IEEE/ASCE Foundation Design Guide, the ASCE Substation Design Guide, EPRI research, CIGRE
management guidelines, and WGO7-Foundations Guidelines and the American Lifeline Alliance.
This work will allow professionals to advance their knowledge as the challenge of a “new age” in
electrical transmission intensifies.
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Preface

These proceedings contain papers presented at the “Electrical Transmission in a
New Age” conference sponsored by the Structural Engineering Institute of the
American Society of Civil Engineers held in Omaha, Nebraska, from September 9 to
12, 2002. The conference was developed to provide an opportunity for new engineers
to learn more about the art and science of transmission line engineering, while also
providing a forum for professionals to exchange ideas and philosophies.

Electrical transmission is more important than ever in maintaining the electrical
grids in this country. These lines are subjected to electrical loads far beyond those of
their original design. Additionally, structural design has become more sophisticated
with the use of better tools of analysis and increased understanding of the various
loading scenarios that significantly affect the reliability of these facilities.

This proceedings covers ten formal sessions including design loads, reliability,
analysis, design, foundations, research, life extension, lifeline criteria, and line
capacity. The session chairs and editor have reviewed all papers included in these
proceedings. All papers are eligible for discussion in the Journal of Structural
Engineering. The papers are also eligible for ASCE awards.

Dan E. Jackman, Editor
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Extreme Wind Load Criteria

Kishor C. Mehta', H ASCE, and Christopher Letchford?

Abstract

Determination of wind loads involve many parameters. These parameters can
be divided into three categories; wind climate, localized wind characteristics
and wind-structure interaction. Using the wind loading formulation of ASCE
7-98, the paper discusses each parameter for calculation of wind loads on
transmission line structures.

Introduction

All buildings and structures around the world are affected by extreme winds.
As a result, they are designed to resist wind loads induced by windstorms.
Some structures, such as one-story reinforced concrete buildings, are not
sensitive to wind loads, while other structures, such as transmission line
structures, are very sensitive to wind effects. Hence, more attention is given to
wind loads for transmission line structures.

Wind is a natural phenomenon that fluctuates continuously. Any wind
speed and wind direction record would show that wind fluctuates continuously
in space and time. These fluctuations are termed wind characteristics. Also,
weather is a random phenomenon with windstorms occurring in an
unpredictable manner during the life of a structure. Because of temporal
unpredictability of windstorms, basic design wind speed is assessed in a
probabilistic sense.

Thus, the design wind loads are assessed using wind climate of the
geographical region and local wind characteristics. The fluctuating nature of

! Wind Science and Engineering Research Center, Texas Tech University, Box 41023,
Lubbock, Texas 79409, phone: (806) 742-3479 ext. 323, fax: (806) 742-3446,
Kishor.Mehta@wind.ttu.edu

2 Wind Science and Engineering Research Center, Texas Tech University, Box 41023,
Lubbock, Texas 79409, phone: (806) 742-3479 ext. 328, fax: (806) 742-3446,
Chris.Letchford@wind.ttu.edu
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wind is hidden in equivalent static loads used for design purposes. Standards
and codes are developed to provide equivalent static loads for a specified
probability of exceeding wind speed (wind climate).

This paper discusses the various parameters involved in developing a
simple static loading criteria for transmission lines structures. Formulation of
the national standard (ASCE 7-98, 2000) is used for discussion of parameters.

ASCE 7-98 Formulation of Wind Loads

The national consensus standard, Minimum Design Loads for Buildings and
Other Structures, ASCE 7-98 (2000) specifics wind loads in Section 6. The
formulation of the wind loads for structures is given by the following two
equations

q.= 0.00256 K, K K.V 6))
F = ¢,GCsA¢ @

Where F- design wind force (Ib, N)
q.- velocity pressure evaluated at height z (Ib/ft%, N/m?)
K- velocity pressure exposure coefficient evaluated at height z
K- topographic factor
K4 wind directionality factor
V- basic wind speed corresponding to a 3-second gust speed at 33ft
(10m) above ground in flat, open terrain (miles/hour, m/s)
I- importance factor
G- gust effect factor
C¢ force coefficient (shape factor)
Ay area projected on a plane normal to the wind direction (sq ft, sq m)

Each of the terms of equations 1 and 2 have specific role in determining wind
loads. The parameters basic wind speed V and importance factor I are related
to wind climate. Other parameters in the equations are related to local wind
characteristics and to wind-structure interaction.

Basic Wind Speed V

Basic wind speeds given in Figure 6-1 in ASCE 7-98 (2000) are used to
determine wind loads. The map of Figure 6-1 is developed using statistical
analysis of recorded maximum annual gust speeds at almost 450 stations in
the contiguous United States; exceptions are hurricane-prone regions. Peterka
and Shahid (1998) used the concept of superstation by combining recorded
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data at 8 to 10 stations in a region. The combined data was checked for
independence and represented 300 to 400 years of data. The advantage of
long length of record is that it significantly narrows (reduces) error-band.
Fisher-Tippett Type I extreme value distribution is used to obtain wind speeds
associated with different annual probability of exceeding. The map in Figure
6-1 of ASCE 7-98 is for 0.02 annual probability of exceeding wind speed (50-
year mean recurrence interval (MRI)). The annual probability of exceeding
and MRI are reciprocal of each other. The East coast and Gulf coast of the
United States as well as the islands in the Caribbean and Pacific Oceans are
affected by hurricane winds (in Guam, hurricane is called typhoon). The wind
climate in hurricane-prone regions is distinctly different than the one in the
contiguous United States. The wind speed contours in hurricane-prone
regions are developed by Vickery and Twisdale (1995) using Monte-Carlo
numerical simulation. Since the wind climate of hurricanes is different, it was
necessary to calculate wind speeds in coastal regions using 500-year MRI.
These wind speeds, then, are divided by 1.5 to obtain equivalent 50-year MRI
wind speed contours (see Commentary Section C 6.5.4 of ASCE 7-98 (2000)
for further explanation). Thus, the wind speeds in the map of Figure 6-1 of
ASCE 7-98 (2000) are consistent with 50-year MRI.

The 50-year MRI is a probabilistic term. There are different
probabilities of exceeding 50-year MRI wind speed depending on the life of a
structure. Table 1 shows the probabilities of exceeding basic wind speed of
map of ASCE 7-98 for various life span of a structure. For example,
according to Table 1, if a transmission line structure’s life is 50 year, there is a
64% chance of exceeding 50-year MRI wind speeds; if the life of the structure
is 25 years, there is a 40% probability of exceeding 50-year MRI wind speed.
These numbers suggest that there is a good chance of exceeding 50-year MRI
wind speed during the life of a transmission line structure.

Table 1. Probability of Exceeding (ASCE 7-98, 2000)

Mean Annual
Recurrence Probability of
Interval (years) Exceeding 1 10 25 50

Life of a Structure

25 0.04 0.04 | 0.34 | 0.64 | 0.87
50 0.02 0.02 | 0.18 | 0.40 | 0.64
100 0.01 0.01 | 0.10 | 0.22 | 0.40

200 0.005 0.005 | 0.05 | 0.10 | 0.22
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Importance Factor 1

Importance factor 1 is used to change basic wind speed from 50-year MRI
(0.02 annual probability of exceeding basic wind speed) to 25-year MRI or
100-year MRI. As can be seen in Table 1, 100-year MRI basic wind speed
will have 22% chance of exceeding during the structure’s life of 25 years. For
important structures, higher structural reliability is desired. Importance factor
for structures to be designed for 100-year MRI wind speed is 1.15; thus the
wind loads are increased by 15%.

Constant 0.00256

The constant 0.00256 in equation 1 reflects mass density of air and
dimensions of wind speed. We like to use wind speed in miles per hour, but
the resulting pressures are in pounds per square foot. Hence, it is necessary to
convert wind speed from miles per hour to feet per second. This conversion is
hidden in the constant 0.00256. For SI system where wind speed is in meter
per second and pressure is in N/m’, this constant is 0.613.

The density of air for temperature of 59° F and sea level barometric
pressure of 29.9 inches of mercury is taken as 0.0765 pounds per cubic foot.
The air density is strongly affected by elevation above sea level and to some
extent by temperature and relative humidity. Table 2 gives air density for
various altitude above sea level. The maximum and minimum values of air
density reflect the range of density for extreme temperatures and relative
humidity. It is advisable to use maximum value of air density at high altitude
above sea level unless a meteorologist is consulted to ascertain extreme
temperature and relative humidity values during probable windstorms. At
10,000 ft above sea level, the air density (maximum value) is smaller by 23
percent; thus, the wind load can be reduced by the same amount.

Velocity Pressure Exposure Coefficient K,

The velocity pressure exposure coefficient (exposure coefficient) reflects
change in wind speed due to terrain and height above ground. The winds are
movement of air. The airflow is retarded due to the friction of ground. The
winds are slower close to the ground and are reduced more if ground surface
is rougher (e.g. suburban, wooded terrain). ASCE 7-98 (2000) defines four
exposure categories; A. large city centers; B. urban, suburban and wooded
areas; C. open terrain like airports; and D. area exposed to large body of
water. The wind speed map (figure 6-1 of ASCE 7-98) is for Exposure C and
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for wind 33ft (10 m) above ground. The exposure coefficient is designed to
adjust wind speed for any height above ground and for one of the four terrains
(the coefficient is applied to pressure).

For example, wind pressure at 120 ft above ground in open terrain is 31%
higher (K20=1.31 for Exposure C) than the one at 33 fi. However, if the
structure is located in suburban or heavily wooded area, the pressure is only
4% higher (ki20=1.04 for Exposure B) than the basic pressure obtained with
basic wind speed of the map (at 33 ft in open terrain). Correct assessment of
surrounding terrain can provide more accurate wind loads.

Table 2. Air Density (ASCE 7-98, 2000)

Altitude Ambient Air Density

Feet Meters* | Minimum | Average** | Maximum
(Ib/ft%) (b/ft’) b/ft)

0 0 0.0712 0.0765 0.0822

2,000 610 0.0675 0.0720 0.0768

4,000 1,219 0.0640 0.0678 0.0718

6,000 1,829 0.0608 0.0639 0.0672

8,000 2,438 0.0577 0.0602 0.0628

10,000 | 3,048 0.0547 0.0567 0.0588

*1 ft=0.305m

**] Ib/ft’ = 16.0 kg/m’
Topographic Factor K

Wind flow over hilly terrain is a very complex phenomena. Wind speeds can
increase or decrease depending on the shape of the hills and the complex
terrain. Literature available for wind flow over complex terrain (Jackson and
Hunt, 1975; Lemelin et al, 1988; Walmsley et al, 1986) permits some
simplication of wind speed-up criteria over isolated hill and escarpment.
Where the terrain is rolling hills or complex terrain, the engineer is guided to
use good judgment, seek expert advice, or pursue wind tunnel testing.

ASCE 7-98 (2000) topographic effect criteria are for isolated hill or
escarpment (no similar feature 2 miles upwind of the site) that is at least 15 ft
high for Exposure C and 60ft high for Exposure B. The wind speed-up is
maximum at the crest of a hill or an escarpment. This speed-up depends on
the shape of the topographic feature. The wind speed-up reduces as the
distance from the crest increases and as the height above ground increases.
Thus, there is a speed-up bubble that depends on slope of hill or escarpment,
distance from the crest, and height z from the ground. These items are
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included in the topographic factor K5 of the ASCE 7-98 (2000). Currently,
sufficient information is not available to permit any shielding (reduction of
wind speed) due to topographic feature. Engineer would have to resort to
wind tunnel testing for a specific site to take advantage of shielding.

Gust Effect Factor G

Gust effect factor is often called ‘gust response factor.” It is a factor that
accounts for the response of a structure due to turbulence in the wind. Two
types of response of structure are considered in gust effect factor, )
background turbulence response, and (2) resonance turbulence response.

The background turbulence response is related to a relatively rigid
structure. The response depends on turbulence intensity in wind, size of gust
and size of structure. It should be noted that turbulence intensity and size of
gust vary with terrain and height above ground. Gust effect factor based only
on background turbulence response has a value of less than one since the basic
wind speed is a gust speed. Also, the gust size and structure size are related;
the larger the structure, the smaller the value of gust effect factor.

The resonance turbulence response is related to frequency of
turbulence matching the frequency of vibration of a structure. ASCE 7-98
(2000) specifies that resonance response has to be considered if a structure has
fundamental frequency of vibration less that 1 Hz (1 cycle per second or
period of a cycle is greater than 1 second); in this case the structure is
considered flexible. The resonance turbulence response depends on several
factors including turbulence intensity, gust size, fundamental frequency of the
structure, structural and aerodynamic damping, structure size and gust
correlation. In addition, for transmission line structure, matching of frequency
of vibration of tower and conductor is an important parameter. Vann et al
(1997) conducted a sensitivity study of transmission line structure for ‘gust
response factor’ for parameters such as pole height, conductor span and pole
damping factor. He points out that even though basic wind speed is 3-second
gust, the structure will experience resonance response in addition to
background turbulence response if it is flexible. The formulation of
determination of gust effect factor, which includes resonance turbulence
response, is complex. For brevity, the reader is referred to the literature
(Davenport, 1962; ASCE 7-98, 2000; ASCE, 1991 under revision).

Force Coefficient C;

Force coefficients for any structure depends on the size and shape of the
structure. Only way to determine force coefficient value for a structure is
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through experimentation. Wind tunnel testing is used to obtain force
coefficients. Wind tunnel simulates wind and its characteristics at model scale
to perform tests on models. The geometric scale can vary from 1:25 to 1:500.
Because of the geometric scaling of the model, wind tunnel has certain
limitations. For example, it is not feasible to match Reynolds number
between prototype and model scale. However, fluid dynamicists working in
wind tunnel can account for this mis-match to obtain credible results. The
projected area Ay is used in wind tunnel data analysis to obtain force
coefficient. Thus, the force coefficient and area of the structure are
interrelated; they have to be used in the same way as they were used to obtain
force coefficients from wind tunnel.

Summary

Wind loads depend on many parameters. In general parameters can be
divided into three categories; wind climate (basic wind speed and importance
factor); local wind characteristics (height and terrain exposure, topographic
factor, turbulence); and wind-structure interaction (gust effect factor and force
coefficients). All these parameters are accounted for in formulation of wind
loads in ASCE 7-98 (2000). In some cases, e.g., gust effect factor, the
formulation is simplified for a complex phenomenon. As we improve our
understanding of each of the parameter, the formulation of wind loads criteria
may become more complex, but it will be more accurate. Availability of
computer software will ease the burden of complex calculations, and will
allow us to estimate more accurately the wind loads.
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