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Preface

The problem of estimating the values of a random (or stochastic) process given obser-
vations of a related random process is encountered in many areas of science and engi-
neering, e.g., communications, control, signal processing, geophysics, econometrics, and
statistics. Although the topic has a rich history, and its formative stages can be attributed
to illustrious investigators such as Laplace, Gauss, Legendre, and others, the current
high interest in such problems began with the work of H. Wold, A. N. Kolmogorov,
and N. Wiener in the late 1930s and early 1940s. N. Wiener in particular stressed the
importance of modeling not just “noise” but also “signals” as random processes. His
thought-provoking originally classified 1942 report, released for open publication in
1949 and now available in paperback form under the title Time Series Analysis, is still
very worthwhile background reading. '

As with all deep subjects, the extensions of these results have been very far-
reaching as well. A particularly important development arose from the incorporation
into the theory of multichannel state-space models. Though there were various earlier
partial intimations and explorations, especially in the work of R. L. Stratonovich in
the former Soviet Union, the chief credit for the explosion of activity in this direction
goes to R. E. Kalman, who also made important related contributions to linear systems,
optimal control, passive systems, stability theory, and network synthesis.

In fact, least-squares estimation is one of those happy subjects that is interest-
ing not only in the richness and scope of its results, but also because of its mutually
beneficial connections with a host of other (often apparently very different) subjects.
Thus, beyond those already named, we may mention connections with radiative transfer
and scattering theory, linear algebra, matrix and operator theory, orthogonal polyno-
mials, moment problems, inverse scattering problems, interpolation theory, decoding
of Reed—Solomon and BCH codes, polynomial factorization and root distribution prob-
lems, digital filtering, spectral analysis, signal detection, martingale theory, the so-called
Ho theories of estimation and control, least-squares and adaptive filtering problems,
and many others. We can surely apply to it the lines written by William Shakespeare
about another (beautiful) subject:

“Age does not wither her, nor custom stale,
Her infinite variety.”
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Though we were originally tempted to cover a wider range, many reasons have
led us to focus this volume largely on estimation problems for finite-dimensional linear
systems with state-space models, covering most aspects of an area now generally known
as Wiener and Kalman filtering theory. Three distinctive features of our treatment
are the pervasive use of a geometric point of view, the emphasis on the numerically
favored square-root/array forms of many algorithms, and the emphasis on equivalence
and duality concepts for the solution of several related problems in adaptive filtering,
estimation, and control. These features are generally absent in most prior treatments,
ostensibly on the grounds that they are too abstract and complicated. It is our hope
that these misconceptions will be dispelled by the presentation herein, and that the
fundamental simplicity and power of these ideas will be more widely recognized and
exploited.

The material presented in this book can be broadly categorized into the following
topics:

¢ Introduction and Foundations
Chapter 1: Overview
Chapter 2: Deterministic Least-Squares Problems
Chapter 3: Stochastic Least-Squares Problems
Chapter 4: The Innovations Process
Chapter 5: State-Space Models

e Estimation of Stationary Processes
Chapter 6: Innovations for Stationary Processes
Chapter 7: Wiener Theory for Scalar Processes
Chapter 8: Recursive Wiener Filters

Estimation of Nonstationary Processes
Chapter 9: The Kalman Filter
Chapter 10: Smoothed Estimators

e Fast and Array Algorithms
Chapter 11: Fast Algorithms
Chapter 12: Array Algorithms
Chapter 13: Fast Array Algorithms

Continuous-Time Estimation
Chapter 16: Continuous-Time State-Space Estimation

Advanced Topics
Chapter 14: Asymptotic Behavior
Chapter 15: Duality and Equivalence in Estimation and Control
Chapter 17: A Scattering Theory Approach



Preface  xxi

Being intended for a graduate-level course, the book assumes familiarity with
basic concepts from matrix theory, linear algebra, linear system theory, and random
processes. Four appendices at the end of the book provide the reader with background
material in all these areas.

There is ample material in this book for the instructor to fashion a course to
his or her needs and tastes. The authors have used portions of this book as the basis
for one-quarter first-year graduate level courses at Stanford University, the University
of California at Los Angeles, and the University of California at Santa Barbara; the
students were expected to have had some exposure to discrete-time and state-space
theory. A typical course would start with Secs. 1.1-1.2 as an overview (perhaps omitting
the matrix derivations), with the rest of Ch. 1 left for a quick reading (and re-reading
from time to time), most of Chs. 2 and 3 (focusing on the geometric approach) on
the basic deterministic and stochastic least-squares problems, Ch. 4 on the innovations
process, Secs. 6.4-6.5 and 7.3-7.7 on scalar Wiener filtering, Secs. 9.1-9.3, 9.5, and 9.7
on Kalman filtering, Secs. 10.1-10.2 as an introduction to smoothing, Secs. 12.1-12.5
and 13.1-13.4 on array algorithms, and Secs. 16.1-16.4 and 16.6 on continuous-time
problems.

More advanced students and researchers would pursue selections of material from
Sec. 2.8, Chs. 8, 11, 14, 15, and 17, and Apps. E and E These cover, among other
topics, least-squares problems with uncertain data, the problem of canonical spectral
factorization, convergence of the Kalman filter, the algebraic Riccati equation, duality,
backwards-time and complementary models, scattering, etc. Those wishing to go on to
the more recent Hy, theory can find a treatment closely related to the philosophy of the
current book (¢f Sec. 1.6) in the research monograph of Hassibi, Sayed, and Kailath
(1999).

A feature of the book is a collection of nearly 300 problems, several of which
complement the text and present additional results and insights. However, there is
little discussion of real applications or of the error and sensitivity analyses required
for them. The main issue in applications is constructing an appropriate model, or
actually a set of models, which are further analyzed and then refined by using the
results and algorithms presented in this book. Developing good models and analyzing
them effectively requires not only a good appreciation of the actual application, but
also a good understanding of the theory, at both an analytical and intuitive level. It is
the latter that we have tried to achieve here; examples of successful applications have
to be sought in the literature, and some references are provided to this end.
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Symbols

We collect here, for ease of reference, a list of the main symbols and signs used through-
out the text.

The set of real numbers.

e =B

The set of complex numbers.

T Matrix transposition.
*  Complex conjugation; Hermitian transposition.

<& denotes the end of a theorem/lemma/proof/example/remark.
z~!  denotes a unit-time delay.
a € S The element a belongs to the set S.

a boldface letter denotes a random variable.
a letter in normal font denotes a vector in Euclidean space.

Ex denotes the expected value of a random variable x.
{x,y} denotes Exy* for column random vectors x and y.
[x]I> denotes Exx* for a zero-mean random variable x.
x 1 y denotes uncorrelated zero-mean random variables x and y.
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xxiv

{x,y) denotes the inner product x*y for column vectors x and y.
x| denotes x*x for a column vector x.
IxH d_enotes +/x*x for a column vector x.
x Ly denotes orthogonal vectors x and y.
1Al The 2-induced norm = the maximum singular value of A.
1Allg The Frobenius norm of A.
b The quantity a is defined as b.
axb The quantity a is propaortional to b.
col{a, b} a column vector with entries a and b.
vec{A} a column vector formed by stacking the columns of A.
diag{a, b} a diagonal matrix with diagonal entries @ and b.
adb The same as diag{a, b}.
0 a zero scalar, vector, or matrix.
I, The identify matrix of sizen x n.

x(z) or X(z2) = Z{x;} denotes the bilateral z-transform of a sequence {x;}.
X(f) = Flx@)} denotes the Fourier transform of a function x(z).

X(s) = L{x(®)} denotes the bilateral Laplace transform of x(z).
X (e/®) denotes the Discrete-Time Fourier Transform of {x;}.
L{xq, X3, ..} denotes the linear span of the variables {x;, x;, ...}.
Xi(j I.l.m.s. estimator of x; given observations up to time j.
X; l.l.m.s. estimator of x; given observations up to timei{ — 1.
i) The estimation error x; — X;j;.
X; The estimation error x; — X;.
{}+ Causal part of a transfer function.
{-}- Anti-causal part of a transfer function.

{-}s.c. Strictly causal part of a transfer function.



P >0
P =0
pl2
A>B
A=>=B
det A
trace A

On)

OR
LDU
UDL
LDL*

UDU*

Thm.
Cor.
Def.
Fig.

LT
Ils.
l.Lm.s.
l.km.s.e

m.m.s.e.

LS
. p.d.f

a.e.
w.r.t.
RHS
LHS

Symbols

a positive-definite (p.d.) matrix P.

a positive-semidefinite (p.s.d.) matrix P.

a square-root factor of a matrix P > 0, usually triangular.
means that A — B is positive-definite.

means that A — B is positive-semidefinite.

Determinant of the matrix A.

Trace of the matrix A.

A constant multiple of n, or of the order of n.

The QR factorization of a matrix.
Lower-diagonal-upper decomposition of a matrix.
Upper-diagonal-lower decomposition of a matrix.
LDU decomposition of a Hermitian matrix.

UDL decomposition of a Hermitian matrix.

“Theorem.”
“Corollary.”
“Definition.”
“Figure.”

“Linear time-invariant.”

“linear least-squares.”

“finear least-mean-squares.”

“linear least-mean-squares estimation/estimator.”
“minimum mean-square error.”

“least-squares.”

“probability density function.”

“if and only if.”
“almost everywhere.”
“with respect to.”
“right-hand side.”
“left-hand side.”
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ROC  “Region of convergence.”

ARE  “Algebraic Riccati equation.”

DARE “Discrete-time aigebraic Riccati equation.”

CARE “Continuous-time algebraic Riccati equation.”
LMI “Linear Matrix inequality.”

AR “Autoregressive model.”
MA  “Moving average model.”
ARMA “Autoregressive moving average model.”
FIR “Finite impulse response filter.”
IR “Infinite impulse response filter.”

SNR  “Signal to noise ratio.”
MAP  “Maximum a-posteriori.”
EKF  “Extended Kalman filter.”

SISO  “Single-input single-output.”
MIMO  “Muitiple-input multiple-output.”
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