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PREFACE

The propagation of mechanical disturbances in solids is of interest in many
branches of the physical sciences and engineering. This book aims to present
an account of the theory of wave propagation in elastic solids. The material
is arranged to present an exposition of the basic concepts of mechanical
wave propagation within a one-dimensional setting and a discussion of
formal aspects of elastodynamic theory in three dimensions, followed by
chapters expounding on typical wave propagation phenomena, such as
radiation, reflection, refraction, propagation in waveguides, and diffraction.
The treatment necessarily involves considerable mathematical analysis.
The pertinent mathematical techniques are, however, discussed at some
length.

I hope that the book will serve a dual purpose. In addition to being a
reference book for engineers and scientists in the broad sense, it is also
intended to be a textbook for graduate courses in elastic wave propagation.
As a text the book should be suitable for students who have completed
first-year graduate courses in mechanics and mathematics. To add to its
utility as a textbook each chapter is supplemented by a set of problems,
which provide a useful test of the reader’s understanding, as well as further
illustrations of the basic ideas.

The book was developed from notes for a course offered to graduate
students at Northwestern University. In the spring of 1969 a substantial
part of the text was prepared in the form of typewritten notes for a series
of lectures, while I was a visiting member of the faculty at the University
of California in La Jolla. I am pleased to record my thanks for that op-
portunity. I also wish to express my gratitude to the Rector Magnificus of
the Technological University of Delft and the Trustees of the Ir. Cornelis
Gelderman Fund for inviting me to act as visiting professor in the department
of mechanical engineering at the Technological University, in 1970-1971.
While I was in Delft the larger part of the manuscript was completed. A
sabbatical leave from Northwestern University during that period is
gratefully acknowledged.
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VIII PREFACE

For the material of Chapters 5 and 6 I should like to acknowledge my
indebtedness to the lectures and publications of Professor R. D. Mindlin.
Substantial parts of Chapter 3 are based on the dissertation of Professor
A. T. de Hoop, and on the work of Professor E. Sternberg. I am also in-
debted to many colleagues who read chapters of the book, and who provided
me with their constructive criticism. Needless to say, I alone am responsible
for errors of fact and logic.

A special word of thanks goes to Mrs. Ruth H. Meier who for many
years provided excellent secretarial assistance, and who typed and retyped
most of the manuscript as the material was arranged and rearranged.

Let me close with the wish that this book may convey some of the fas-
cinating aspects of wave propagation as a phenomenon, and that it may have
done justice to the elegance of the mathematical methods that have been
employed. :

J.D. A.
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INTRODUCTION

The propagation of mechanical disturbances

The local excitation of a medium is not instantaneously detected at positions
that are at a distance from the region of excitation. It takes time for a
disturbance to propagate from its source to other positions. This phenom-
enon of propagation of disturbances is well known from physical experience,
and some illustrative examples immediately come to mind. Thus an
earthquake or an underground nuclear explosion is recorded in another
continent well after it has occurred. The report of a distant gun is heard
after the projectile has arrived, because the velocity of disturbances in air,
i.e., the speed of sound, is generally smaller than the velocity of the projectile.
More familiar manifestations of the propagation of disturbances are waves
in a rope or propagating ripples on the surface of water. These examples
illustrate mechanical wave motions or mechanical wave propagation.

Mechanical waves originate in the forced motion of a portion of a
deformable medium. As elements of the medium are deformed the dis-
turbance is transmitted from one point to the next and the disturbance, or
wave, progresses through the medium. In this process the resistance offered
to deformation by the consistency of the medium, as well as the resistance
to motion offered by inertia, must be overcome. As the disturbance propa-
gates through the medium it carries along amounts of energy in the forms of
kinetic and potential energies. Energy can be transmitted over considerable
distances by wave motion. The transmission of energy is effected because
motion is passed on from one particle to the next and not by any sustained
bulk motion of the entire medium. Mechanical waves are characterized by
the transport of energy through motions of particles about an equilibrium
position. Thus, bulk motions of a medium such as occur, for example, in
turbulence in a fluid are not wave motions.

Deformability and inertia are essential properties of a medium for the
transmission of mechanical wave motions. If the medium were not deformable
any part of the medium would immediately experience a disturbance in the

1



2 INTRODUCTION

form of an internal force or an acceleration upon application of a localized
excitation. Similarly, if a hypothetical medium were without inertia there
would be no delay in the displacement of particles and the transmission of
the disturbance from particle to particle would be effected instantaneously
to the most distant particle. Indeed, in later chapters it will be shown
analytically that the velocity of propagation of a mechanical disturbance
always assumes the form of the square root of the ratio of a parameter
defining the resistance to deformation and a parameter defining the inertia
of the medium. All real materials are of course deformable and possess
mass and thus all real materials transmit mechanical waves.

The inertia of a medium first offers resistance to motion, but once the
medium is in motion inertia in conjunction with the resilience of the medium
tends to sustain the motion. If, after a certain interval the externally applied
excitation becomes stationary, the motion of the medium will eventually
subside due to frictional lossess and a state of static deformation will be
reached. The importance of dynamic effects depends on the relative magni-
tudes of two characteristic times: the time characterizing the external ap-
plication of the disturbance and the characteristic time of transmission of
disturbances across the body.

Suppose we consider a solid body subjected to an external disturbance F()
applied at a point P. The purpose of an analysis is to compute the deformation
and the distribution of stresses as functions of the spatial coordinates and time.
If the greatest velocity of propagation of disturbances is ¢, and if the external
disturbance is applied at time ¢ = 0, the disturbed regions at times ¢ = #,
and ¢t = t, are bounded by spheres centered at the point P, with radii ct,
and ct,, respectively. Thus the whole of the body is disturbed at time
t = r/c, where r is the largest distance within the body measured from the
point P. Now suppose that the significant changes in F(¢) take place over a
time #,. It can then be stated that dynamic effects are of importance if
t, and r/c are of the same order of magnitude. If #, > r/c, the problem is
quasistatic rather than dynamic in nature and inertia effects can be neglected.
Thus for bodies of small dimensions a wave propagation analysis is called
for if ¢, is small. If the excitation source is removed the body returns to
rest after a certain time. For excitation sources that are applied and removed,
the effects of wave motion are important if the time interval of application
is of the same order of magnitude as a characteristic time of transmission
of a disturbance across the body. For bodies of finite dimensions this is the
case for loads of explosive origins or for impact loads. For sustained external
disturbances the effects of wave motions need be considered if the externally



CONTINUUM MECHANICS 3

applied disturbances are rapidly changing with time, i.e., if the frequency is
high.

In mathematical terms a traveling wave in one dimension is defined by
an expression of the type f = f(x—ct), where f as a function of the spatial
coordinate x and the time # represents a disturbance in the values of some
physical quantity. For mechanical waves f generally denotes a displacement,
a particle velocity or a stress component. The function f(x—ct) is called a
simple wave function, and the argument x—ct is the phase of the wave
function. If ¢ is increased by any value, say A¢, and simultaneously x is in-
creased by cAt, the value of f(x—ct) is clearly not altered. The function
f(x— ct) thus represents a disturbance advancing in the positive x-direction
with a velocity ¢. The velocity ¢ is termed the phase velocity. The propagating
disturbance represented by f(x— ct) is a special wave in that the shape of the
disturbance is unaltered as it propagates through the medium.

Continuum mechanics

Problems of the motion and deformation of substances are rendered
amenable to mathematical analysis by introducing the concept of a con-
tinuum or continuous medium. In this idealization it is assumed that
properties averaged over a very small element, for example, the mean mass
density, the mean displacement, the mean interaction force, etc., vary
continuously with position in the medium, so that we may speak about the
mass density, the displacement and the stress, as functions of position and
time. Although it might seem that the microscopic structure of real materials
is not consistent with the concept of a continuum, the idealization produces
very useful results, simply because the lengths characterizing the microscopic
structure of most materials are generally much smaller than any lengths
arising in the deformation of the medium. Even if in certain special cases
the microstructure gives rise to significant phenomena, these can be taken
into account within the framework of the continuum theory by appropriate
generalizations.

The analysis of disturbances in a medium within the context of the
continuum concept belongs to the time-tested discipline of continuum
mechanics. In achieving the traditional objective of determining the motion
and deformation generated by external excitations the analysis passes through
two major stages. In the first stage the body is idealized as a continuous
medium and the physical phenomena are described in mathematical terms
by introducing appropriate mathematical abstractions. Completion of this



