OXFORD

turbulence

AN INTRODUCTION FOR
SCIENTISTS AND ENGINEERS

P. A. DAVIDSON




Turbulence

An Introduction for Scientists and Engineers

P.A. Davidson
University of Cambridge

LI

E200500026



OXFORD

UNIVERSITY PRESS
Great Clarendon Street, Oxford ox 2 6pp

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide in
Oxford New York
Auckland Bangkok Buenos Aires Cape Town Chennai
Dar es Salaam Delhi Hong Kong Istanbul
Karachi Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai
Nairobi Sdo Paulo Shanghai Taipei Tokyo Toronto

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

© Oxford University Press 2004

The moral rights of the author have been asserted
Database right Oxford University Press (maker)

First published 2004

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the
appropriate reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,
Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose this same condition on any acquirer

A catalogue record for this title is available from the British Library
Library of Congress Cataloging in Publication Data
(Data available)
ISBN 019852948 1 (Hbk)
ISBN 019852949 X (Pbk)
10987654321

Typeset by Newgen Imaging Systems (P) Ltd., Chennai, India
Printed in China



Turbulence



For Henri and Mars



Preface

Turbulence is all around us. The air flowing in and out of our lungs is
turbulent, as is the natural convection in the room in which you sit.
Glance outside; the wind which gusts down the street is turbulent, and
it is turbulence that disperses the pollutants, which belch from the rear
of motor cars, saving us from asphyxiation. Turbulence controls the
drag on cars, aeroplanes, and bridges, and it dictates the weather
through its influence on large-scale atmospheric and oceanic flows. The
liquid core of the earth is turbulent, and it is this turbulence that
maintains the terrestrial magnetic field against the natural forces of
decay. Even solar flares are a manifestation of turbulence, since they are
triggered by vigorous motion on the surface of the sun. It is hard not to
be intrigued by a subject which pervades so many aspects of our lives.

Yet curiosity can so readily give way to despair when the budding
enthusiast embarks on serious study. The mathematical description of
turbulence is complex and forbidding, reflecting the profound diffi-
culties inherent in describing three-dimensional, chaotic processes.

This is a textbook and not a research monograph. Our principle aim
is to bridge the gap between the elementary, heuristic accounts of
turbulence to be found in undergraduate texts, and the more rigorous,
if daunting, accounts given in the many excellent monographs on the
subject. Throughout we seek to combine the maximum of physical
insight with the minimum of mathematical detail.

Turbulence holds a unique place in the field of classical mechanics.
Despite the fact that the governing equations have been known since
1845, there is still surprisingly little we can predict with relative cer-
tainty. The situation is reminiscent of the state of electromagnetism
before it was transformed by Faraday and Maxwell. A myriad of ten-
tative theories have been assembled, often centred around particular
experiments, but there is not much in the way of a coherent theoretical
framework." The subject tends to consist of an uneasy mix of semi-
empirical laws and deterministic but highly simplified cartoons,

' One difference between turbulence and nineteenth century electromagnetism is
that the latter was eventually refined into a coherent theory, whereas it is unlikely that

this will ever occur in turbulence.
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bolstered by the occasional rigorous theoretical result. Of course, such a
situation tends to encourage the formation of distinct camps, each with
its own doctrines and beliefs. Engineers, mathematicians, and physicists
tend to view turbulence in rather different ways, and even within each
discipline there are many disparate groups. Occasionally religious wars
break out between the different camps. Some groups emphasize the
role of coherent vortices, while others downplay the importance of
such structures and advocate the use of purely statistical methods of
attack. Some believe in the formalism of fractals or chaos theory, others
do not. Some follow the suggestion of von Neumann and try to unlock
the mysteries of turbulence through massive computer simulations,
others believe that this is not possible. Many engineers promote the use
of semi-empirical models of turbulence; most mathematicians find that
this is not to their taste. The debate is often vigorous and exciting and
has exercised some of the finest twentieth century minds, such as
L.D. Landau and G.I. Taylor. Any would-be author embarking on a
turbulence book must carefully pick his way through this minefield,
resigned to the fact that not everyone will be content with the outcome.
But this is no excuse for not trying; turbulence is of immense impor-
tance in physics and engineering, and despite the enormous difficulties
of the subject, significant advances have been made.

Roughly speaking, texts on turbulence fall into one of two cate-
gories. There are those that focus on the turbulence itself and address
such questions as: where does turbulence come from, what are its
universal features, to what extent is it deterministic’ On the other
hand, we have texts whose primary concern is the influence of tur-
bulence on practical processes, such as drag, mixing, heat transfer, and
combustion. Here the main objective is to parameterize the influence
of turbulence on these processes. The word modelling appears fre-
quently in such texts. Applied mathematicians and physicists tend to
be concerned with the former category, while engineers are neces-
sarily interested in the latter. Both are important, challenging subjects.

On balance, this text leans slightly towards the first of these cate-
gories. The intention is to provide some insight into the physics of
turbulence and to introduce the mathematical apparatus which is
commonly used to dissect turbulent phenomena. Practical applica-
tions, alas, take a back seat. Evidently such a strategy will not be to
everyone’s taste. Nevertheless, it seems natural when confronted with
such a difficult subject, whose pioneers adopted both rigorous and
heuristic means of attack, to step back from the practical applications
and try and describe, as simply as possible, those aspects of the subject
which are now thought to be reasonably well understood.

Our choice of material has been guided by the observation that the
history of turbulence has, on occasions, been one of heroic initiatives
which promised much yet delivered little. So we have applied the filter
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of time and chosen to emphasize those theories, both rigorous and
heuristic, which look like they might be a permanent feature of the
turbulence landscape. There is little attempt to document the latest
controversies, or those findings whose significance is still unclear. We
begin, in Chapters 1-5, with a fairly traditional introduction to the
subject. The topics covered include: the origins of turbulence,
boundary layers, the log-law for heat and momentum, free-shear flows,
turbulent heat transfer, grid turbulence, Richardson’s energy cascade,
Kolmogorov’s theory of the small scales, turbulent diffusion, the clo-
sure problem, simple closure models, and so on. Mathematics is kept to
a minimum and we presuppose only an elementary knowledge of fluid
mechanics and statistics. (Those statistical ideas which are required, are
introduced as and when they are needed in the text.) Chapters 1-5 may
be appropriate as background material for an advanced undergraduate
or introductory postgraduate course on turbulence.

Next, in Chapters 6-8, we tackle the somewhat refined, yet fun-
damental, problem of homogeneous turbulence. That is, we imagine a
fluid that is vigorously stirred and then left to itself. What can we say
about the evolution of such a complex system? Our discussion of
homogeneous turbulence differs from that given in most texts in that
we work mostly in real space (rather than Fourier space) and we pay
as much attention to the behaviour of the large, energy-containing
eddies, as we do to the small-scale structures.

Perhaps it is worth explaining why we have taken an unconventional
approach to homogeneous turbulence, starting with our slight reluct-
ance to embrace Fourier space. The Fourier transform is con-
ventionally used in turbulence because it makes certain mathematical
manipulations easier and because it provides a simple (though crude)
means of differentiating between large and small-scale processes.
However, it is important to bear in mind that the introduction of the
Fourier transform produces no new information; it simply represents a
transfer of information from real space to Fourier space. Moreover,
there are other ways of differentiating between large and small scales,
methods that do not involve the complexities of Fourier space. Given
that turbulence consists of eddies (blobs of vorticity) and not waves, it
is natural to ask why we must invoke the Fourier transform at all.
Consider, for example, grid turbulence. We might picture this as an
evolving vorticity field in which vorticity is stripped off the bars of the
grid and then mixed to form a seething tangle of vortex tubes and
sheets. It is hard to picture a Fourier mode being stripped off the bars of
the grid! It is the view of this author that, by and large, it is preferable to
work in real space, where the relationship between mathematical
representation and physical reality is, perhaps, a little clearer.

The second distinguishing feature of Chapters 6-8 is that equal
emphasis is given to both large and small scales. This is a deliberate
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attempt to redress the current bias towards small scales in mono-
graphs on homogeneous turbulence. Of course, it is easy to see how
such an imbalance developed. The spectacular success of Kolmogorov’s
theory of the small eddies has spurred a vast literature devoted to
verifying (or picking holes in) this theory. Certainly it cannot be
denied that Kolmogorov’s laws represent one of the milestones of
turbulence theory. However there have been other success stories too.
In particular, the work of Landau, Batchelor, and Saffman on the
large-scale structure of homogeneous turbulence stands out as a
shining example of what can be achieved through careful, physically
motivated analysis. So perhaps it is time to redress the balance, and it
is with this in mind that we devote part of Chapter 6 to the dynamics
of the large-scale eddies. Chapters 6-8 may be suitable as background
material for an advanced postgraduate course on turbulence, or act as
a reference source for professional researchers.

The final section of the book, Chapters 9 and 10, covers certain
special topics rarely discussed in introductory texts. The motivation
here is the observation that many geophysical and astrophysical flows
are dominated by the effects of body forces, such as buoyancy,
Coriolis and Lorentz forces. Moreover, certain large-scale flows are
approximately two-dimensional and this has led to a concerted
investigation of two-dimensional turbulence over the last few years.
We touch on the influence of body forces in Chapter 9 and two-
dimensional turbulence in Chapter 10.

There is no royal route to turbulence. Our understanding of it is
limited and what little we do know is achieved through detailed and
difficult calculation. Nevertheless, it is hoped that this book provides
an introduction which is not too arduous and which allows the reader
to retain at least some of that initial sense of enthusiasm and wonder.

It is a pleasure to acknowledge the assistance of many friends and
colleagues. Alan Bailey, Kate Graham, and Teresa Cronin all helped in
the preparation of the manuscript, Jean Delery of ONERA supplied
copies of Henri Werle's beautiful photographs, while the drawing of
the cigarette plume and the copy of Leonardo’s sketch are the work of
Fiona Davidson. I am grateful to Julian Hunt, Marcel Lesieur, Keith
Moffatt, and Tim Nickels for many interesting discussions on turbu-
lence, and to Alison Jones and Anita Petrie at OUP for their patience
and professionalism. In addition, several useful suggestions were made
by Ferit Boysan, Jack Herring, Jon Morrison, Mike Proctor, Mark
Saville, Christos Vassilicos, and John Young. Finally, I would like to
thank Stephen Davidson who painstakingly read the entire manu-
script, exposing the many inconsistencies in the original text.

P.A. Davidson
Cambridge, 2003



It remains to call attention to the chief outstanding difficulty of our subject.
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