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The distinguished Romanian math-
ematician Professor Aristide
Halanay, one of the founders of the
modern Romanian school of ordi-
nary differential equations, was
born in the small Romanian town
Ramnicu-Sarat. In October 1946 he
was appointed as an instructor in
algebra at Bucharest University
where he later obtained a Diploma
in Mathematics in 1947. From
1949-1952, Aristide was a gradu-
ate student at the “Lomonosov”
Professor Aristide Halanay State University in Moscow under
(1924-1997) the supervision of Professor V. V.
Nemytskii, one of the pioneers of the qualitative theory of ordinary
differential equations. In 1952 Halanay became a Candidate in
Physico-Mathematical Sciences (the Russian equivalent of a PhD)
with a thesis on 2nd order linear differential equations with almost
periodic coefficients. He was an associate professor from 1953-1968
and professor from 1968-1989 on the Faculty of Mathematics at
Bucharest University.

Aristide was a member of the editorial board of the Journal of
Differential Equations from its inception in 1965. His scientific ac-
tivity started in 1947 with papers in algebra, and saw immense growth
exemplified by production of approximately 200 papers and 12 books
and monographs. He closely followed new trends in mathematical
research and, over the years, made important contributions to the foun-
dation of the theory of differential equations with delayed argument;
stability and oscillations; singular perturbations; absolute stability of
control systems; qualitative theory of discrete and stochastic systems;
and optimal control of delay and discrete systems. In the last quarter
of the twentieth century, Halanay showed an almost exclusive inter-
est in problems that are most directly connected with practical appli-
cations, for example, stability of synchronous machines, dynamics of
hydropower plants, and so on. The relevance and importance of
Halanay’s results are perhaps best illustrated by the fact that his mono-




graph Differential Equations, Stability, Oscillations, Time Lags, first
published in Romanian in 1963, was later published in English and
Japanese and is one of the most cited references in the field.

Whether teaching or doing scientific research, he showed tremen-
dous energy in everything he did. Amazingly creative and a hard
worker, Aristide worked on mathematics until his last days. To those
who knew and cherished him, he will be greatly missed.
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This is a new volume in the book series Advances in Discrete Math-
ematics and Applications. The series will be a forum for all aspects of
discrete mathematics and will act as a unifying force in the field, pre-
senting books in areas such as numerical analysis, discrete dynamical
systems, chaos theory, fractals, game theory, stability, control theory,
complex dynamics, computational linear algebra, boundary value
problems, oscillation theory, asymptotic theory, orthogonal polyno-
mials, special functions, combinatorics and functional equations. Vol-
umes on applications of difference equations in science and engineer-
ing will also be considered for publication.

Advances in Discrete Mathematics and Applications will publish
textbooks for both the upper undergraduate and graduate levels. In
addition, it will publish advanced works at the research level.

We hope to meet the growing needs of the mathematical commu-
nity for books in discrete mathematics.

Saber Elaydi
Gerry Ladas



PREFACE

This monograph was written as a result of the establishment of the
book series devoted to discrete dynamical systems by Professors Elaydi
and Ladas. They kindly invited us to participate in this project.

It was natural for us to use this opportunity to review and reevalu-
ate our experience in the research on discrete time systems. For many
years we worked jointly on several problems in stability and oscilla-
tions, both in continuous time and discrete time, combining the expe-
rience of a professional mathematician and a theoretical engineer.

In this monograph we have focussed on regular behavior related to
stability and stable oscillations. While writing this book, we were
cognizant of the large volume of recent literature on this subject, in-
cluding contributions from Professors Elaydi and Ladas. However, it
is almost impossible to thoroughly cover all areas of the subject through
such contributions. By basing the book essentially on our research
experience, it is our aim to present a unique perspective of this sub-
ject.

We take this opportunity to again thank Professors Elaydi and Ladas
for connecting us with the series. Thanks also go to Professor Anton
Batatorescu for his excellent performance in processing the manu-
script and the publisher for their effective cooperation.
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CHAPTER 1

INTRODUCTION

Discrete-time system dynamics is a topic of broad interest; the main
reason for this interest comes from the variety of the sources of discrete-
time dynamical models. We may cite:

19 Discrete-time models determined by the nature of the de-
scribed processes: this is particularly true for economics, biology,
physiology and discrete-time information processing.

20 Discrete-time models induced by the impulses occurring in
continuous-time systems.

30 Discrete models occurring in controlled systems when the feed-
back information used in control generation is composed of output
samples obtained through sampling intervals of time.

4° Discrete systems occurring during numerical treatment of con-
tinuous time systems.

But the interest in discrete-time systems may also be explained
by the simplicity of their treatment - it requires minimal computa-
tional and graphical resources to obtain the solutions of the associated
difference equations and follow this behavior. Since difference equa-
tions may be viewed as recurrence relations, their treatment seems
much simpler that the one of differential equations.

In many cases the models describing biological or economic proc-
esses lead to what is now called chaotic behavior - a rather compli-
cated, irregular picture of the evolution trajectories. In fact one of
the sources for the widespread popularity of the discrete models lies
in the fact that the simplest nonlinear ones may display such chaotic
behavior that some people - mainly physicists - consider them to be
some type of paradigm that may enhance the various phenomena of
the physical universe.

In opposition to such behavior, the other three sources we men-
tioned for discrete-time systems display mainly regular behavior, sta-

1



2 CHAPTER 1. INTRODUCTION

bility. This fact is less obvious in the case of the systems with shocks
where the impulses may generate chaotic behavior. Nevertheless, in
this case also of interest are mainly those cases when the impulses,
controlled or not, generate stable processes. The stability problems
are especially important in the case of sampled data systems and
also when the discrete-time system corresponds to a computational
process.

In the following we shall illustrate these aspects using some simple
examples.

1.1. MODELS WITH DISCRETE STORAGE OF THE
INFORMATION

In several cases discrete-time equations are obtained when the phys-
ical parameter of interest is stored through intervals of time (”from
time to time” ). Following Maynard-Smith (1974), May (1995), Elaydi
(1996), Kocic and Ladas (1993) let us cite the following discrete-time
models in biology:

the self-limited growth model (the logistic equation):
zipr=azg(l—x) , t=0,1,2,... (1.1)

- the discrete-generation predator-prey model (Maynard-Smith
(1974) ):

Typ1 = axy — breys

1.2
Yt+1 = —cys + dreyy W)

- the host-parasitoid interaction model (May (1995) ):
Ht+1 = ROHtF (Pt, Ht) (13)

B+1 = CHt [1 —F (Pt, Ht)]

where H; and P; represent the number (or density) of hosts and
parasites in generation t.

- the Leslie model of the age structure for a population (Svirezev
and Logofet (1978) ):

R 2t b
Tiy1 = ;blxt7 b‘L 2 0 (14)

zii}:sizi, 0<s;<1,i=1,n—-1
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- the Kermack-McKendrick model of epidemics (Kocic and Ladas
(1993), p. 195):

Sisq =e oS,
Lipa = PL+ (1 —e*) S, (1.5)
Riy1v=(1-B8)1I;+R:

- discrete competitive systems (Kocic and Ladas (1993), p. 199):

Tir1 =z f (azy + byy)

1.
Yer1 = Yeg (cxe + dyz) | (1.6)

where a, b, c,d are positive constants, f,g are decreasing on
(0, 00) and there exist Z > 0, § > 0 such that f (Z) =g (7) = 1.

In order to illustrate the dynamic behavior for systems described
by such models we shall consider the logistic equation in some de-
tail. It is quite well known (Elaydi (1996) ) that while elementary in
structure, this equation displays various types of behavior, from very
simple to very complicated ones.

A. We shall call solution of (1.1) a sequence {z;}, defined recur-
rently by:

Ti41 = ATt (1 = CIIt)

with given z¢. In fact z; is the t-iterate of the mapping f : R — R
defined by f(z) = az (1 —z). Remark that f(0) = f(1) = 0 and
max f (z) = f(1/2) = a/4. It follows that f(z) maps the interval
[0,1] into itself provided 0 < a < 4. Since in population dynamics
T; is a rated population density, we shall have for physical reasons
0 < z; < 1. From the mathematical point of view this means that the
model may be considered correct if zo € [0, 1] implies z; € [0,1] for
all positive integers t; we shall say that [0,1] is an invariant set for
(1.1). The above considerations show that this is true for a € (0, 4].

In the following we shall assume a € (0,4] and consider equation
(1.1) only on the interval [0,1]. The constant solutions of (1.1) are
called equilibria; they are given by

z=f(z)=az(l-1x)
being the fixed points of the mapping f (z) : ' =0, 22 = (a — 1) /a.

Remark that 0 < #2 < 1 only if a > 1 otherwise this equilibrium is
not contained in the considered interval.
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Let 0 < a < 1. On the interval [0, 1] we shall have
Ty — T =x¢la(l —z¢) — 1] <0;

hence any sequence z; with 0 < zo < 1 is decreasing. Since z; > 0 we
shall have tlim x; > 0; from the existence of this limit we deduce that
—00

letting ¢ — oo in (1.1) is legitimate, the limit being a nonnegative
equilibrium, i.e., 2! = 0 since #2 < 0 in this case. We obtained that
the equilibrium #! = 0 is attractive for the solutions starting in [0, 1] .
Let now a > 1; in this case both equilibria belong to the interval
0,1]:0=3'<(a—1)/a=2%< 1.
Consider the deviations with respect to the nonzero equilibrium

2 namely 2z; = z; — #2; we shall have

z
241 =(2—-a)z —az? (1.7)

If1 <a < 3then |2—a| <1 and for 29 small enough we shall have
2z — 0 exponentially by the Liapunov theorem on stability by the
first approximation (see Section 2.3 of the book). Since the deviations
from the equilibrium 2 tend exponentially to zero (for ¢ — oco0) we
shall say that 22 = (a — 1) /a is an attractor. Under the condition
1 < a < 3 the other equilibrium, 2! = 0 is repulsive. Indeed let
zo > 0 be a neighborhood of #! = 0 e.g. satisfying zo < (a — 1) /a.
We have also

Ty — T =1 (a—1—az) >0,

provided az; < a — 1. It follows that any solution sequence z; that
satisfies 0 < ¢ < (a — 1) /a is strictly increasing, i.e., the deviations
from ! even if small initially are increasing which shows repulsiveness
of this equilibrium in the considered case.

Let now a > 3. In this case the equilibrium #2 is also repulsive,
as follows from the equation in deviations (1.7); indeed we shall have

2
-7 = [(2-a)z- azf]” -2 =
= 2Z(a—1+az)(a—3+az)=
(@a—3)%22+22 [2(a—3)+2a(a—2)2 + az}]
The polynomial a)? + 2a (a — 2) A + 2 (a — 3) has negative roots for

a > 3 (its coefficients are strictly positive), hence we may take some
§ > 0 sufficiently small in order that for |A| < é this polynomial is
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positive. As long as |z;| < § we have
2 2 2 2
zi— 2 > (a—3)" 2z

which shows that {2;} is an increasing sequence; hence it has to leave
the set |z| < §. This proves our assertion. Summarizing we have the
following:

1) If 0 < a < 1, the equilibrium at ! = 0 is attractive and the
equilibrium at 22 = (a — 1) /a is repulsive.

2) If 1 < a < 3, the equilibrium at £! = 0 is repulsive while the
equilibrium at £2 = (a — 1) /a is attractive.

3) If a > 3 both equilibria are repulsive.

B. Other types of solutions are the so-called cyclic solutions
satisfying z;+r = x: for some positive integer T. Let T = 2; i.e.,
Tty2 = Z¢. In the case of (1.1) we shall have

Tpyo = aTpy1 (1 — Te41) = a’z, QI-—z)[l—azt(1—z¢)] = x4
The initial conditions defining cycles are the solutions of
z=a?z(1-z)[1 —az(1—z)] (1.8)
that is the fixed points of the mapping
(@) = (fo f) (&) =%z (1 - 2) [1 — az (1 - )]

the iterated mapping. Obviously the fixed points of f (z) are among
the fixed points of f2 (z) ; they define equilibria not cycles so we ignore
them. It is easily seen that the solutions of interest of (1.8) are the
solutions of the equation

a?z2 —a(a+1)z+a+1=0,
namely,
3 a+l—y/(a+1)(@a-3) _, a+1++/(a+1)(a—23)
3 = g B = .
2a 2a
These solutions define the 2-cycle in the sense that

— A3 7 — A3
Ty =T 4, Tg41 =T , Tg42 =T .

One may ask whether this 2-cycle is attractive, i.e., whether z; with
zo in a neighborhood of 3 or #* will approach #3, 44, respectively.



