Programming

COmpOne -

O’REILLY*
F % H R Juval Lowy &

IR

NETHEFE (g

Programming .NET Components

Juval Léwy

O REILLY"

Beljing » Cambridge « Farnham + Kiln « Paris « Sebastopol « Taipei » Tokyo

- O'Reilly Media, Inc.# A A& & & 5t #e 4t b 3R

FREXFHARGG

EEER%E (CIP) HiE

NETHEFR: 20k / (£) &R (Lowy,).) #F —#HE
C — R REAEHR, 20064

43 : Programming NET Components, Second Edition

ISBN 7-5641-0274-8

I.N.. O.7&. IR -~ Brii -3 IV.TP393
o A B 450 CIP BdEei = (2006) 55010621 5

{LHHRAURE (FAL & R
B 10-2006-36 %

©2005 by O'Reilly Media, Tnc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2006. Authorized reprint of the original English edition, 2005 O'Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
52 § J& & O'Reilly Media, Inc. & #i 2005,

SR EP ARy & Kotk RRAR R 2006, 30 PR &9 i KR Fe 4R R A A ok B AR H LB BT A & —— O'Reilly
Media, Inc.8§# T _

WA A, ARBEHT, 2BGETRYfo & RTRUETH L FH,

£ &/
$ 5/
HIEGEHR/
B EIR i/
HAR AT/
Wk
BRI/
F o ES
M &/
En ¥/

£ i

NETHHHA R EMH (REMR)

ISBN 7-5641-0274-8

o

Ellie Volckhausen, 3k{i

K R&HMst (press.seu.edu.cn)
VIR 2 5 (HRBRED 210096)

& T ELRIE PR A 5]

TETHEK < 980 &% 16 FF 40.5 3k
20064 4 A% LI 200648 4 B 1 RENR
0001-2600 #t

85.00 ¢ ()

O'Reilly Media, Inc.4}48

O'Reilly Media, Inc. B #:5% L7 UNIX. X, Internet MI 4 EZSBBRREF
TSR AT, FR2RILMERER,

BT (The Whole Internet User's Guide & Catalogd (#0295 LB BIgTES
g R EER SO FB2z—) F GNN (B R Internet [T ARG MNG) , FEE
WebSite (5 — T HE PCHIWeb RS Bk {f), O'Reilly Media, Inc.— & 4 F- Internet
EBHIRATS,

LB ERRIGEY, OReilly Media, Inc. R EREMITENBER LER — F—
FHEMRAER. SREHUTEABBUBE AL, O'Reilly Media, Inc. A FRE
IR F L H =, X2 O'Reilly Media, Inc. BB T — N IE ¥R R T H bl
HIHA 4. O'Reilly Media, Inc. Fi G 3R A BRI TR B R, RHERTLR
FIHRE K., OReilly Media, IncB2F W £ B EREEBEE — BNEFRERXT
BHREARETR. BRWER, MBEHRSEE, OReilly Media, Inc. i fb 715 i
HLEP. FHAO'Reilly Media, Inc. EF# S5HBH L FEEE, FiLL O'Reilly
Media, Inc. &3 P HIEREH LB B,

tH Rz st BA

B E TRV R BRI Z A, AREES A— ARG % B, +E
BRI R R AR Dl = B iE 3 B % S T E X AYB0. A,
T RALASRI B R RS 2 Pt A BT RS R T B E N AR A RER]
TRRESMERTIEER . R AR F% 8 O'Reilly Meida, Incik Bbhil, 5
SRS TR AR E AT S B ANEE, MR & E Gk
IR R R b, HERBEH RS EE B RS A, A R
" RBLAIEY.

BOVAIRAFE, SR BEREMENALTENERAR . BLEOT A R
B ImARS AT AR, X E AT RN R RA BRI, thEOHE
EE R R I AYE A AEL.

EHT IR 89— MR ENARE 35, 45

o (IRAEME Linux P93 FRRY (BEETMRD

o {Perl RfEERY (RZEIAK)

o (EHPerl {mB F D (HER)

* (PerlifiZE AT FMARY GEZENRR)

s (BEAKLEHTML 5CSS, XHTMLY (ZEER)
o (UML 2.0 8ARFMY (BENRK)

o (802.11 T MR AR £ MY GEHR)
s (MEHEBZARY (HEHM)

o {NETHEFR FETHY (REER)

o {ASP.NET H#E HTIRY (BEIMH)

To my daughter, Abigail

 Preface

I've been fortunate in my career to have lived through most generations of Microsoft
component technelogies. In the mid-1990s, [developed dynamic link libraries and
exported their functions, and I used Microseft Foundation Class (MFC) extension
DILs to expose classes. [experienced firsthand the enormous complexity invoived in
managing a set of interacting applications comprised of 156 DLLs and deployed as a
single unit, as well as the maintenance and versioning issues raised by their use of
ordinal numbers. 1 helped design COM-like solutions to those problems, and I
remember when I first heard about COM and when I generated my first GUID using
a command-line utility.

[learned how to write class factories and IDL interfaces long before the release of ATL,
and 1 tried to use RPC before DCOM abstracted it away. I designed component-based
applications using COM and experienced what it takes to share design ideas with other
developers who aren’t familiar with its requirements. 1 programmed with MTS and
learned the workarounds involved in its use, and [marveled at the elegance and useful-
ness of COM+ when it came to architecting large-scale enterprise frameworks.

My understanding of component-oriented programming has evolved and grown over
that time, just as the component-based technologies themselves have done. 1 have
often asked myself what the fundamental principles of using components are, and in
what ways they differ from traditional object-oriented programming, 1 have tried to
learn from my mistakes and 1o abstract and generalize the good ideas and tech-
niques | have encountered or developed on my own. 1 believe that I have identified
some core principles of component-oriented design that transcend any technologies
available roday and that result in components that are easier to reuse, extend, and
maintain over the long ierm,

With the advent of the NET Framework, Windows developers finally have at their dis-
posal a first-class technology that aims at simplifying the task of developing and
deploying component-based applications. .NET is the result of much soul-searching by
Microsoft, and in my view it improves on the deficiencies of previous technologies—
especially COM. It incorporates and enforces a variety of proven methodologies and
approaches, while retaining their core benetits,

To me, .NET is fundamentally a component technology that provides an easy and
clean way to generate binary components, in compliance with what I regard as sound
design principles. .NET is engineered from the ground up to simplify component
development and deployment, and to support interoperability berween program-
ming languages. It is highly versatile, and .NET components are used for building a
wide range of component-based applications, from standalone deskrop applications
to web-based applications and services,

Of course, .NET is more than just a component technology; it’s actually a blanket
name for a set of technologies.

In the context of this bock, whenever I use the term “.NET,” I'm tefer-
ring to the NET Framework in general and the component technol-
N o . . .

s ogy it embodies in particular.

NET provides several specialized application frameworks, including Windows
Forms for rich Windows clients, ADO.NET for data access, ASP.NET for web appli-
cations, and web services for exposing and consuming remote services that use the
SOAP and other XML-based protecols. Visual Studio 2005 supports the develop-
ment of .NET applications in C#, Visual Basic, Managed C++, and J#, but you can
use more than a dozen other languages as well. You can host .NET applications in
Windows or in SQL Server 2005. Microsoft server products will increasingly support
.NET-connected applications in the coming years, and future versions of Windows
will be heavily based on .NET.

Scope of This Book

This book covers the topics and teaches you the skills you need to design and
develop component-based .NET applications, However, to make the most of .NET,
it helps to know its origins and how it improves on the shortcomings of past technol-
ogies. In addition to showing you how to perform certain tasks, the book often
explains the rationale behind them in terms of the principles of component-oriented
programming. Armed with such insights, you can optimize your application design
for maintainability, extensibility, reusability, and productivity. While the book can
be read without prior knowledge of COM, I occasionally use COM as a point of ref-
erence when it helps explain why .NET operates the way it does.

In this book, you’ll learn not only about .NET component programming and the
related system issues, but alsc about relevant design options, tips, best practices, and
pitfalls. The book avoids many implementation details of NET and largely confines its
coverage to the possibilities and the practical aspects of using .NET as a component
technology: how to apply the technology and how to choose among the available
design and programming models. In addition, the book contains many useful utilities,
tools, and helper classes I've developed since .NET was introduced five years ago.

xiv | Prsfaa;

These are aimed at increasing your productivity and the quality of your .NET compo-
nents. After reading this book, you will be able to start developing .NET components
immediately, taking full advantage of the NET development infrastructure and appli-
cation frameworks. The book makes the most of what both .NET 1.1 and .NET 2.0
have te offer.

Here is a brief summary of the chapters and appendixes in this book:

Chapter 1, Introducing Component-Oriented Programming
Provides the basic terminology used throughout the book. This chapter con-
trasts object-oriented programming with component-oriented programming and
then enumerates the principles of component-oriented programming. These
principles are the “why” behind the “how™ of .NET, and understanding them is
a prerequisite to correctly building compenent-based applications.

Chapter 2, .NET Component-Oriented Programming Essentials

Describes the elements of .NET, such as the Common Language Runtime
(CLR), .NET programming languages, the code-generation process, assemblies,
and building and composing those assemblies. This chapter ends by explaining
how .NET maintains binary compatibility between clients and components and
discussing the implications of this solution for the programming model. If you
are already familiar with the fundamentals of the NET Framework, both in ver-
sion 1.1 and version 2.0, feel free to skim over or entirely skip this chapter.

Chapter 3, Interface-Based Programming
Examines working with interfaces. This chapter explains how to separate an
interface from its implementation in .NET, how to implement interfaces, and
how to design and factor interfaces that cater to reusability, maintainability, and
extensibility.

Chapter 4, Lifecycle Management
Deals with the way .NET manages objects, and the good and bad implications
this has for the overall .NET programming model. This chapter explains the
underlying .NET garbage-collection mechanism and shows component develop-
ers how to dispose of resources held by instances of a component.

Chapter 5, Versioning
Begins by describing the .NET version-control policy and the ways you can
deploy and share its components. After dealing with the default policy, this
chapter shows how to provide custom version binding and resolution policies to
address application- or even machine-specific needs. The chapter also discusses
how to develop applications that support multiple versions of NET itself.

Chapter 6, Events
Shows how to publish and subscribe to events in a component-based applica-
tion. After discussing the built-in support provided by .NET, this chapter pre-
sents a number of best practices and utilities that are designed to make the most
of the basic event support and to improve it.

Preface | xv

Chapter 7, Asynchronous Calls

Describes .NET’s built-in support for invoking asynchronous calls on compo-
nents, the available programming models, their trade-offs, when to use them,
and their pitfalls.

Chapter 8, Multithreading and Concurrency Management

Explains in depth how to build multithreaded components. No modern applica-
tion is complete without muitiple threads, but multithreading comes with a
hefty price—the need to synchronize access to your components. This chapter
shows how to create and manage threads and how to synchronize access to
objects, using both the little-known synchronization domains and the manuat
synchronization locks. The chapter ends with a rundown of various muluthread-
ing services in .NET, such as the thread pool and timers.

Chaprer 9, Serialization and Persistence

Shows how to persist and serialize an object’s state. Serialization is useful when
saving the state of an application to a file and in remote calls. This chapter dem-
onstrates the use of automatic and custom serialization and shows how to com-
bine serialization with a class hierarchy. You will also see how to improve on the
basic serialization offering using generics.

Chapter 10, Remoting

Demystifies NET support for remote calls. This chapter starts by explaining
application domains and the available remote object types and activation modes.
After a discussion of the remoting architecture, it shows how to set up a distrib-
uted component-based .NET application, both programmatically and adminis-
tratively. The chapter concludes by explaining how to manage the lifecycle of
remote objects using leasing and sponsorship. Even if you do not intend to use
remoting, this chapter provides a lot of details on the inner workings of .NET
and its object activation mechanism, as well as scalability strategies.

Chapter 11, Context and Interception

Describes a powerful and useful (but undocumented) facet of .NET: its ability to

provide ways to define custom services via contexts and call interception. This

chapter explains contexts and how they are used to implement component ser-
vices, as well as the interception architecture and how to extend it. It ends with a
walk-through of two real-life productivity-oriented custom services.

Chapter 12, Security

i

Addresses the rich topic of .NET code-access security. Unlike Windows secu-
rity, .NET security is component-based, not user-based. As such, it opens new
possibilities for component developers. This chapter shows how ta administer
security using the NET configuration tool and how to provide additional secu-
rity programmatically. It also covers how to use .NET role-based security and
how to install a custom authorization mechanism.

| Preface

Appendix A, Interface-Based Web Services
Shows how te enforce a core principle of component-oriented programming—
separation of interface from implementation—when using .NET web services,
both on the service side and the client side.

Appendix B, Unifying Windows Forms and ASP.NET Security
Presents a set of interacting helper classes and controls that enable a Windows
Forms application to use the ASP.NET 2.0 credential-management infrastruc-
ture with the same ease as if it were an ASP.NET application. This provides the
productivity benefits of ASP.NET as well as a unified credentials store, regard-
less of the application user interface.

Appendix C, Reflection and Atiributes
Explains .NET reflection and how to develop and reflect custom attributes. If
you aren’t familiar with reflection, I recommend reading this appendix before
the rest of the chapters.

Appendix D, Generics
Briefly explains generics, which are some of the most powerful and useful fea-
tures of NET 2.0, This book makes extensive use of generics in almost every
chapter. If you are unfamiliar with generics, I recommend that you read this
appendix before the rest of the chapters. More advanced aspects of generics are
covered in the chapters themselves.

Appendix E, C# Coding Standard
Presents a consolidated list of all the best practices and dos and don'ts men-
tioned thought the book. The standard is all about the “how” and the “what,”
not the “why”; the rationale behind it is found in the rest of the book. The stan-
dard is based on the [Design Coding Standard, which has become the de facto
industry coding standard for .INET development. The [Design standard in turn
was based on the first edition of this book.

Some Assumptions About the Reader

I assume that you, the reader, are an experienced developer and that you feel com-
fortable with object-oriented concepts such as encapsulation and inheritance. 1 also
assume that you have basic familiarity with either C# or Visual Basic, both in ver-
sions 1.1 and 2.0 of the languages. Although the book uses C# for the most part, it’s
just as pertinent to Visual Basic 2005 developers. In cases in which the translation
from C# to Visual Basic 2005 isn’t straightforward or when the two languages differ
significantly, I've provided either matching Visual Basic 2005 sample code or an
explicit note.

If you're experienced with COM, this book will port your COM understanding to
NET. If you've never used COM before, you’ll find the coverage of the principles
cf component-oriented programming especially useful.

Preface | xvii

Conventions Used in This Book

The following typographic conventions are used in this book:

* ltalic is used for definitions of technical terms, URLs, filenames, directory
names, and pathnames.

» Constant width is used for code samples, statements, namespaces, classes, assem-
blies, interface directives, operators, attributes, and reserved words.

* Bold constant width is used for emphasis in code samples.

4
'. ™| This icon designates a note that is an important aside to the nearby
;s
L 4. text.
) 18

[This icon designates a warning relating to the nearby text.
=
Whenever | wish to make a point in a code sample, I do so with the static Assert
method of the Debug class:
int number = 1+2;
Debug.Assert(number == 3};
The Assert method accepts a Boolean statement and throws an exception when the
staternent is false.

This book follows the recommended naming guidelines and coding style presented
in Appendix E. Whenever it deviates from that standard, it is likely the result of
space or line-length constraints. With respect to naming conventions, I use “Pascal
casing” for public member methods and properties; this means the first letter of each
word in the name is capitalized. For local variables and method parameters I use
“Camel casing,” in which the first letter of the first word of the name is not capital-
ized. I prefix private member variables with anm_:

public class SomeClass

{

private int m Number;

public int Number
{get;set};

[use ellipses between curly braces to indicate the presence of code that is necessary
bur unspecified:

public class SomeClass

{-.0)

wiii | Preface

In the interests of clarity and space conservation, code examples often don't contain
all the using statements needed to specify all the namespaces the examples require;
instead, such examples include only the new namespaces introduced in the preced-
ing text,

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local}

(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, and any additional
informarion. You can access this page at:

http:/fwww.oreilly.com/catalog/pnetcomp2

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

You can also contact the me at:
hitp:/fwww.idesign.net

For more mformation about books, conferences, Resource Centers, and the O’Retlly
Network, see the O’Reilly web site at:

hitp:/fwunw.oreilly.com

Safari Enabled

= When you see a Safari® Enabled icon on the cover of your favorite tech-
sm" nology book, that means the bock is available online through the
arrerrermm O'Reilly Network Safari Bookshelf.

BODOKE BONLINE

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurarte, current informa-
tion. Try it free for at http://safari.oreilly.com,

Preface | xix

Acknowledgments

Shortly after the unveiling of .NET in the summer of 2000, john Osborn from
O'Reilly and 1 started discussing a book that would explore the uses of NET as a
component-based application development platform. The first edition of the book
was the result of John's sponsorship and support. Over the last three years [have
worked closely with Microsoft as part of the Strategic Design Review process for NET
2.0, which has provided me with experience and insight into the making of .NET 2.0.
I'am grateful to the following product and project managers: Dan Fernandez and Eric
Gunnerson from the C# team, Amanda Silver from the Visual Basic team, John
Rivard from the CLR team, and Mart Tavis and Yasser Shohoud from the Indigo
team. Special thanks to Anson Horton, a C# program manager, for his insight, amaz-
ing experttise, and guidance.

The following friends and colleagues helped with the first edition of the baok: Chris
W. Rea, Billy Hollis, Jimmy Nilsson, Nicholas Paldino, Ingo Rammer, and Pradeep
Tapadiya. The following provided valuable feedback for the second edition: Sam
Gentile, Richard Grimes, Norman Headlam, Benjamin Mitchell, and Brian Noyes.
All of them gave generously of their time. In particular, T am grareful to Nicholas Pal-
dino for his help with the second edition. Nick's knowledge of the framework is
unsurpassed, and his meticulous attention to details contributed greatly to the qual-
ity and cohesiveness of this book.

Finally, my family. Many tharks to my wife Dana, who knows all too well that writ-
ing a book entails time away from the family but still encourages me to write. [dedi-
cate this book to my five-year-old daughter Abigail. She has her own computer now,
where she enthusiastically plays her Princesses games. I am waiting for the day I can
talk with her about the principles of building systems and services out of compo-
nents. [think | am going to start with interfaces.

o | Preface

Preface

1.

Table of Contents

Introducing Component-Oriented Programming

Basic Terminology

Compoenent-Oriented Versus Object-Oriented Programming
Principles of Component-Oriented Programming

NET Adherence to Component Principles

Developing .NET Components

.NET Component-Oriented Programming Essentials

Language Independence: The CLR
Packaging and Deployment: Assemblies
Binary Compatibility

Interface-Based Programming

Separating Interface from Implementation
Working with Inierfaces

Interfaces and Generics

Designing and Factoring Interfaces
Interfaces in Visual Studio 2005

Lifecycle Management

The Managed Heap

Traditional Memory De-allocation Schemas
NET Garbage Collection

Object Finalization

Deterministic Finalization

5. Versioningl e 102

Assembly Version Number 102
Assembly Deployment Models 1035
Strong Assembly Names 107
Visual Studio 2005 and Versioning 117
Custom Version Policies 119
CLR Versioning 125

6. BVents .. 129
Delegate-Based Events : 130
Working with .NET Everits ‘ 136

7. Asynchronous@alls 155
Requirements for an Asynchronous Mechanism 156
Revisiting Delegates 157
Asynchronous Call Programming Models 159
Asynchronous Error Handling 172
Asynchronous Events 173
Asynchronous Invocation Picfalls 178
Synchronous Versus Asynchronous Processing 182

8. Multithreading and Concurrency Management 184
Threads and Multithreading 184
Components and Threads 185
Working with Threads 186
Synchronizing Threads 201
.Automatic Synchronization 202
Manual Synchronization 212
The WorkerThread Wrapper Class 243
Synchronizing Delegates 249
Using .NET Mulrithreading Services 252

9, Serializationand Persistence 280
Automatic Serialization 281
Serialization Formatters 285
Serialization Events 291
Serialization and Streams 301
Custom Serialization 304
Serialization and Class Hierarchies 3

x | Tableof Contents

10.

11.

12.

Remoting
Application Domains

Remotc Object Types

Marshaling-by-Reference Activation Modes

The .NET Remoting Architecture

Building a Distributed Application

Leasing and Sponsorship

.NET and Location: Transparency

ContextandInterception
NET Component Services

The .NET Context

Custom Component Services

OUIILY e
The NET Security Archirecture

Configuring Permissions

Programmatic Securiry

Visual Studio 2005 and Security

Principal-Based Security

Addressing Other Security lssues

Interface-Based Web Servicesl
Unifying Windows Forms and ASPNET Security
Reflectionand Attributes il
GOMEIICS .. .\ttt

CGi#CodingStandard

320
330
334
342
348
382
397

399
402
410

435
449
472
494
498
505

Tabte of Contents

{ x

