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- Introduction

Few people outside of mathematics are aware of the varieties of mathemat-
ical experience — the degree to which different mathematical subjects have
different and distinctive flavors, often attractive to some mathematicians and
repellant to others.

The particular flavor of the subject of minimal surfaces seems to lie in

a combination of the concreteness of the objects being studied, their origin
and relation to the physical world, and the way they lie at the intersection
of so many different parts of mathematics. In the past fifteen years a new
component has been added: the availability of computer graphics to provide
illustrations that are both mathematically instructive and esthetically pleas-
ing. .
During the course of the twentieth century, two major thrusts have played a
seminal role in the evolution of minimal surface theory. The first is the work on
the Plateau Problem, whose initial phase culminated in the solution for which
Jesse Douglas was awarded one of the first two Fields Medals in 1936. (The
other Fields Medal that year went to Lars V. Ahlfors for his contributions to
complex analysis, including his important new insights in Nevanlinna Theory.)
The second was the innovative approach to partial differential equations by
Serge Bernstein, which led to the celebrated Bernstein’s Theorem, stating that
the only solution to the minimal surface equation over the whole plane is the
trivial solution: a linear function.

The subsequent history of these two problems provides a fascinating
glimpse into the way a single result can provide the seed for a profusion
of growth in many directions. In the case of Bernstein’s Theorem, the two
obvious directions for generalization were toward a wider class of equations,
and to higher dimensions. Both of those took a while to be realized, since
Bernstein’s original proof did not lend itself easily to generalizations of any
sort. The first step was the discovery of alternative proofs, particularly by
Bers, Heinz, and Nitsche. They made possible the introduction of equations
of “minimal surface type” with many of the properties of the minimal surface
equation, including the Bernstein Theorem. These results are described below
in the article by Leon Simon, himself one of the leading contributors to those
developments. Heinz's proof involved a generalization in a different direction:
bounds on the second derivatives at a point for any solution defined over a
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disk centered at the point. Those bounds tend to zero as the radius of the
disk tends to infinity, showing that a solution over the whole plane must have
all second derivatives identically zero and therefore be a linear function. The
second-derivative bounds can also be reformulated as a bound on the Gauss
curvature, and that approach proved useful in extensions to higher dimensions.
Yet another approach to Bernstein’s Theorem, due to Fleming, provided the
key ideas that yielded the first results for higher dimensions. The big surprise
was the discovery that Bernstein’s Theorem turned out to be true for solu-
tions in up to seven variables, and then false. That again led to a whole series
of new questions about global behavior of the minimal surface equation in
higher dimensions, all of which are explored in the article by Simon.

A generalization of Bernstein’s Theorem in quite another direction was sug-
gested by Nirenberg. His idea was to think of the theorem in more geometric
terms, concerning surfaces not so much as solutions of a differential equation,
but as surfaces with zero mean curvature, and replacing the assumption that
the surface projects onto the whole plane by the pair of assumptions that
the surface be complete and the Gauss map omit a neighborhood of some
point. Formulated in those terms, the result was reminiscent of the Weier-
strass Theorem stating that the values of a nonconstant entire function must
be everywhere dense. That led Nirenberg to a second conjecture that there
should also be a Picard Theorem for minimal surfaces, saying that for a com-
plete minimal surface, if the Gauss map omits more than two values, then
the Gauss map must be constant, and the surface must be a plane. It turned
out that his first conjecture was correct, and the second one false. But it
was Nirenberg’s formulation that was most crucial to further developments,
since it led to a whole new theory, that of complete minimal surfaces, first
in three dimensions, and then of arbitrary codimension. Also, it was natu-
ral to think of replacing Weierstrass and Picard-type results by a Nevanlinna
Theory for the Gauss map. An early result in that direction was the theorem
of Ahlfors-Osserman that the Gauss map of a complete nonplanar minimal
surface not only could not be bounded, but could not belong to Nevanlinna’s
class of “bounded type”. That provided a considerable strengthening of the
Weierstrass result that the Gauss map must be everywhere dense to the fact
that the set of omitted points had to have logarithmic capacity zero. But the
full flowering of the Nevanlinna theory for complete minimal surfaces came
with the work of Fujimoto, and is explained in detail in his paper in this vol-
ume. Fujimoto was also the one to provide the definitive answer to the second
Nirenberg conjecture. After Xavier showed that the image under the Gauss
map could omit at most a finite number of points, Fujimoto proved that the
precise maximum for the number of omitted points possible was four.

The theory of complete minimal surfaces blossomed in quite another direc-
tion following the work of Jorge and Meeks devoted to analyzing the possibil-
ities for a complete minimal surface to be embedded in 3-space, with no self
intersections. Before 1980, the only known examples of complete embedded
minimal surfaces were the plane, the catenoid, and various periodic surfaces,
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such as the helicoid. The latter necessarily had infinite total curvature, and it
seemed not unlikely that there were no others of finite total curvature. Then
Costa came up with an example of a surface which was of genus one, with
three embedded ends, and opened the floodgate for further examples, after
Hoffman and Meeks showed that Costa’s surface was in fact embedded. In
the decade since the publication of Costa's example and Hoffman and Meeks’
first paper, the subject has seen phenomenal growth, all of which is described
in the paper by Hoffman and Karcher in this volume.

These are by no means the only developments that can be traced directly
back to Bernstein’s seminal theorem, but they illustrate the manner in which a
single result can have a powerful influence on the future course of mathematics.

The Plateau problem has been at least equally influential. The general ex-
istence theorems of Douglas left some important questions unanswered. First,
Douglas was unable to rule out the possibility that the surfaces obtained had
certain kinds of singularities, called branch points. Second, he left open the
question of regularity of the surface at the boundary. And third, there was
the question of how many different solution surfaces might be bounded by a
single curve. Much progress has been made on these questions, but much also
remains to be done. A full account of the results to date is given in the paper
by Hildebrandt in this volume. )

One of the most important roles of Plateau’s problem was as a spark to the
development of the powerful new tool known as geometric measure theory.
There were two rather different approaches, one due basically to de Giorgi,
and the other to Federer and Fleming. After leading separate lives for a while,
both from each other and from the “classical” approach to minimal surfaces,
all three methods gradually intermingled, so that methods and results from
geometric measure theory find their way into a number of topics discussed in
this book. Perhaps surprisingly, it has proved especially critical in the PDE
aspect of the subject, where it has played a major role in connection with
Bernstein’s Theorem.

Taken together, the articles in this volume provide a fairly broad spectrum
of recent activity in the field of minimal surfaces. Needless to say, it is far
from comprehensive. The lists of references at the end of the different articles
point in a number of further directions. A combined index to all four articles
at the end of this volume will allow a reader to track down topics of particular
interest, sometimes seen from different perspectives in different articles. That
should help to provide at least some of the flavor that has given the subject
of minimal surfaces such an enduring appeal over the years.

January 1997 Robert Osserman
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1. Introduction

We will survey what is known about minimal surfaces § C R3, which are
complete, embedded, and have finite total curvature: / |K|dA < co. The only

classically known examples of such surfaces were the glane and the catenoid.
The discovery by Costa. [14,15] early in the last decade, of a new example that
proved to be embedded sparked a great deal of research in this area. Many new
examples have been found, even families of them, as will be described below.
The central question has been transformed from whether or not there are any
examples except surfaces of rotation to one of understanding the structure of
the space of examples.

Up to this point, every new ezample of a complete, embedded minimal
surface of finite total curvature has been discovered first by using the global
version of the Enneper-Riemann-Weierstrass representation, which is essen-
tially due to Osserman (58, 59].% This involves knowledge of the compact Rie-
mann surface structure of the minimal surface, as well as its Gauss map and
other geometric-analytic data. One of our goals is to show how this is done
in the case that has been most completely analyzed, namely surfaces with
genus > 1 and three topological ends. An important quality of this construc-
tion is that the Riemann surface and the meromorphic data are constructed
simultaneously under the assumption of symmetry. Moreover, once this is
done, parameters must be found in order to have a well-defined finite-total-
curvature surface. This parameter search is typically done by computer using
a combination of relatively simple numerical routines and relatively complex
graphics tools ([8,41]). In many cases a full theoretical analysis, as is done
here in Section 4 for the three-ended surfaces of Theorem 3.3 has yet to be
carried out. Moreover, solution of the period problem does not at all guarantee
that the surfaces are embedded. In Section 5 we present examples of Calla-
han, Hoffman, Karcher, Meeks and Wohlgemuth that lie in one parameter
families containing both embedded and immersed surfaces. In fact the period
problem and embeddedness are totally independent issues. There are exam-
ples of Weierstrass data meeting all necessary conditions (Proposition 2.4)
for embeddedness, for which the period problem is not solvable (a genus-one
example with two catenoid ends does not exist but Weierstrass data for such
a surface — even a very symmetric one — does) and others for which the period

3 Added in Proof (November, 1996). This was written in early 1995. In the Fall of
1995, Nikolaos Kapouleas constructed new examples using methods similar to those
he used to construct higher genus surfaces of constant mean curvature. Briefly, he
proves that the construction imagined and described at the beginning of Section 5.2
can be carried out in detail (Kapouleas, N.: Complete embedded minimal surfaces
of finite total curvature, preprint). Martin Traizet has carried out an analogous
construction for periodic minimal surfaces (Traizet, M.: Construction de surfaces
minimales en recollant des surfaces de Scherk, Annales de I'Institut Fourier (to

appear)).
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problem is solvable for a family of surfaces that are embedded outside of a
compact set of R3, but are not embedded.

The survey is organized as follows. In Section 2 we present the basic tools
of the subject, the most important of which is the Weierstrass-Enneper repre-
sentation. In Section 2.2 we describe the construction of Chen and Gackstatter
[10], which produces a genus-one surface with the symmetries and end behav-
ior of Enneper’s surface. To our knowledge this complete minimal surface of
finite total curvature was the first one explicitly constructed by first specify-
ing a geometric property — in this case, end behavior ~ and then deriving the
necessary Weierstrass data. It is not, of course, embedded but its construc-
tion, as presented here, has most of the features of the construction of the
three-ended examples in Section 4. In Section 2.3, the hypothesis of embed-
dedness is used to derive relationships between the geometry of the surface
and its analytic representation. Propositions 2.3, 2.4 and 2.5 gather together
all necessary conditions including the relationship between flux, logarithmic
growth rates of the ends and residues of the complex differential of the height
function.

In Section 3, we present the few global rigidity theorems that are known.
(Theorems 3.1 and 3.4, due to Lopez-Ros [51], Schoen [67) and Costa [16].)
We present a proof (in Section 3.1) of the Lopez-Ros theorem, which states
that a complete minimal surface of genus zero and finite total curvature must
be the plane or the catenoid. Our proof follows that of Perez-Ros [60]. We
also state the existence result, Theorem 3.3, for the three-ended, complete
minimal surfaces with genus k — 1 and k vertical planes of symmetry ([30]).
The details of the construction of these surfaces are presented in Section 4. We
include here the estimation of the parameters that solve the period problem
when k > 2. The values of the parameters that close the periods determine
the logarithmic growth rates of the ends of these surfaces. For the surface to
be embedded, they must lie in a certain range, which they {(happily) do. This
is done in Sections 4.5-4.9.

In Section 5, we survey other known examples and discuss what little
is known about the structure of the space of complete embedded minimal
surfaces of finite total curvature. Section 5.2 presents some conjectures about
this space.

Finite total curvature implies finite topology, even without the additional
assumption of embeddedness. The converse is not true; the helicoid is simply
connected, nonflat and periodic, so its curvature is infinite, while its topology
is finite. Up until recently, the helicoid was the only known embedded minimal
surface with finite topology and infinite total curvature. In 1992, we discov-
ered, with Fusheng Wei, a complete embedded minimal surface of genus one
with one end - asymptotic to the helicoid - that has infinite total curvature
[32,33]. The details of this construction are outside the scope of this work.
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However, the extent to which finite topology implies finite total curvature is
discussed in Section 6.4

Section 7 discusses the index of stability of a complete minimal surface.
The basic results [22,25,26] the equivalence of finite index and finite total
curvature, and the fact that the index is completely defined by the Gauss map,
arc discussed. There is, as yet, no known relationship between embeddedness
and properties of the index. This final section is therefore, strictly speaking,
misplaced in this survey. However the ideas and techniques may, in the long
run, prove useful in the study of embeddedness of minimal surfaces.

Acknowledgements. The authors would like to thank Jim Hoffman of MSRI
and Ed Thayer, now in the Department of Molecular Biotechnology at the Uni-
versity of Washington, for the preparation of the computer graphics illustra-
tions in this article. Both were formerly at the Center for Geometry, Analysis,
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where one of us was the Director. Peter Norman and Pascal Romon read ear-
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clarify some important points in Section 2.3. We are grateful to M. Kotani
and S. Nayatani for useful comments on Section 7. Robert Bryant and Michael
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2. Basic Theory
and the Global Weierstrass Representation

Let S,{) be an oriented surface with a Riemannian metric, and let V
denote its Riemannian connection. For a smooth function f:§ — R, we will
denote its differential by df and its gradient by grad f. They are related by
Vf=df(V) = {grad f,V),V € TS, which can be thought of as the defining
equation for grad f. If w is a one form, its covariant derivative Vw is defined

by the relation
(Vyw)V = Uw(V) —w(VyV). (2.1)

The divergence operator is div = tr V and the Laplacian of a smooth function
f is given by Af: = divgrad f. Note that

(Vygrad f,V) = Ulgrad £, V) - (VuV)f = (Vudf)(V).  (22)

4 Added in Proof (November, 1996). Pascal Collin recently showed that a complete
embedded minimal surface with finite topology and more than one end has to
have finite total curvature. He did this by proving the Nitsche Conjecture. See
Section 6.2. (Collin, P.: Topologie et courbure des surfaces minimales proprement
plongées de R®, Ann. Math. 145 (1997), 1-31.



