Optical Sciences

E-G. Neumann

Single-Mode Fibers

Fundamentals

Springer-Verlag

E-G Neumann

Single-Mode Fibers

Fundamentals

With 105 Figures

E8961978

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

Professor Dr. Ernst-Georg Neumann

Bergische Universität Gesamthochschule Wuppertal, Fachbereich Elektrotechnik, Fuhlrottstrasse 10, D-5600 Wuppertal, Fed. Rep. of Germany

Editorial Board

Professor Koichi Shimoda, Ph. D.

Faculty of Science and Technology Keio University, 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223, Japan

Professor Anthony E. Siegman, Ph. D.

DAVID L. MACADAM, Ph. D. 68 Hammond Street Rochester, NY 14615, USA

Electrical Engineering E. L. Ginzton Laboratory, Stanford University Stanford, CA 94305, USA

ARTHUR L. SCHAWLOW, Ph. D. Department of Physics, Stanford University

Stanford, CA 94305, USA

Polytechnic University 333 Jay Street

Brooklyn, NY 11201, USA

THEODOR TAMIR, Ph. D.

Managing Editor: Dr. HELMUT K. V. LOTSCH

Springer-Verlag, Tiergartenstrasse 17 D-6900 Heidelberg, Fed. Rep. of Germany

ISBN 3-540-18745-6 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-18745-6 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1988 Printed in Germany

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Printing: Weihert-Druck GmbH, D-6100 Darmstadt Binding: J. Schäffer GmbH & Co. KG, 6718 Grünstadt 2154/3150-543210 – Printed on acid-free paper Edited by Theodor Tamir

Springer Series in Optical Sciences

Editorial Board: D.L. MacAdam A.L. Schawlow K. Shimoda A. E. Siegman T. Tamir

Managing Editor: H. K. V. Lotsch

- 42 Principles of Phase Conjugation By B. Ya. Zel'dovich, N. F. Pilipetsky, and V. V. Shkunov
- 43 X-Ray Microscopy
 Editors: G. Schmahl and D. Rudolph
- 44 Introduction to Laser Physics By K. Shimoda 2nd Edition
- 45 **Scanning Electron Microscopy**Physics of Image Formation and Microanalysis
 By L. Reimer
- 46 Holography and Deformation Analysis By W. Schumann, J.-P. Zürcher, and D. Cuche
- 47 Tunable Solid State Lasers
 Editors: P. Hammerling, A.B. Budgor, and A. Pinto
- 48 Integrated Optics
 Editors: H. P. Nolting and R. Ulrich
- 49 Laser Spectroscopy VII
 Editors: T. W. Hänsch and Y. R. Shen
- 50 Laser-Induced Dynamic Gratings By H. J. Eichler, P. Günter, and D. W. Pohl

- 51 Tunable Solid State Lasers for Remote Sensing Editors: R. L. Byer, E. K. Gustafson, and R. Trebino
- 52 Tunable Solid-State Lasers II Editors: A. B. Budgor, L. Esterowitz, and L. G. DeShazer
- 53 The CO₂ Laser By W. J. Witteman
- 54 Lasers, Spectroscopy and New Ideas
 A Tribute to Arthur L. Schawlow
 Editors: W. M. Yen and M. D. Levenson
- 55 Laser Spectroscopy VIII
 Editors: W. Persson and S. Svanberg
- 56 X-Ray Microscopy II Editors: D. Sayre, M. Howells, J. Kirz, and H. Rarback
- 57 **Single-Mode Fibers** Fundamentals By E.-G. Neumann
- 58 Photoacoustic and Photothermal Phenomena Editors: P. Hess and J. Pelzl

Volumes 1-41 are listed on the back inside cover

to Maike

Preface

Single-mode fibers are the most advanced means of transmitting information, since they provide extremely low attenuation and very high bandwidths. At present, long distance communication by single-mode fibers is cheaper than by conventional copper cables, and in the future single-mode fibers will also be used in the subscriber loop. Since single-mode fibers have many applications, a variety of people need to understand this modern transmission medium. However, waveguiding in single-mode fibers is much more difficult to understand than waveguiding in copper lines.

A single-mode fiber is a dielectric waveguide operated at optical wavelengths. Since 1961, I have been involved in experimental and theoretical research on dielectric rod waveguides in the microwave region. From the experiments, I learned much about the properties of a wave guided by a dielectric rod or a glass fiber, especially about its behavior at waveguide discontinuities like bends, gaps, or the waveguide end. Since 1972, my co-workers and I have also been investigating dielectric waveguides at optical frequencies, and since 1973 I have lectured on "Optical Communications". These activities have shown that there is a need for a tutorial introduction to the new technical field of single-mode fibers. In this book the physical fundamentals are emphasized and the mathematics is limited to the absolutely necessary subjects. Besides presenting a physical explanation of waveguiding in single-mode fibers, it is also the aim of this book to give an overview of the knowledge accumulated in this field. Many references are given in the text to the original papers in technical journals or conference proceedings.

E.-G. Neumann

Acknowledgements

In writing a book, the author needs the help and advice of many people. I gratefully acknowledge the help of colleagues both in university and in industry, of assistants, of co-workers, and of many students. Particular thanks are extended to Prof. Dr.-Ing. H. Chaloupka, Dr. rer. nat. F. Krahn, Dr.-Ing. D. Rittich, and Dipl.-Ing. J. Streckert.

Contents

1.		roduction	1
		Historical Note	1
	1.2	Multimode and Single-Mode Fibers	2
	1.3	Aim and Organization of the Book	4
2900			
2 .		ysical Explanation of Waveguiding by Single-Mode	
		ers	9
		Free Wave Beam in a Homogeneous Medium	9
		Wave Beam Guided by a Straight Single-Mode Fiber	12
		Wave Beam Propagating in a Curved Single-Mode Fiber	14
	2.4	Free Beam Radiated from the End of a Single-Mode Fiber	15
_			
3.		ctromagnetic Fields	17
		Coordinate Systems	18
		Vectors	19
		Vector Fields	19
		Complex Notation for Sinusoidal Quantities	20
	3.5	Graphical Representation of Electromagnetic Fields	21
		3.5.1 Field Lines	21
		3.5.2 Field Vectors	21
		3.5.3 Wavefronts	21
		3.5.4 Lines of Constant Amplitude	23
		3.5.5 Beam Boundary	23
		3.5.6 Intensity Vector	24
		3.5.7 Regions of High Intensity	24
		3.5.8 Field Profiles	24
		The Poynting Vector and the Transmitted Power	24
	3.7	Coherence	25
		3.7.1 Interference	25
		3.7.2 Coherent and Incoherent Waves	26
		3.7.3 Degree of Coherence and Visibility of Interference Fringes	27
		3.7.4 Coherence Time and Coherence Length	28
		3.7.5 Coherence Area	30
		3.7.6 Relation Between Linewidth and Coherence Time	31

4.	Gai	ussian Beams	35
	4.1	Amplitude Distribution	35
	4.2	Phase Distribution	41
	4.3	Electric and Magnetic Field Lines	45
	4.4	Power Transmitted by a Gaussian Beam	48
	4.5	Uniform Plane Wave	50
	4.6	Polarization of Gaussian Beams	54
	4.7	Curved Gaussian Beams	55
		Gaussian Beams of Higher Order	56
		Propagation Through Optical Systems	58
5.		e Fundamental Fiber Mode	61
		The Refractive-Index Profile	63
		Normalized Frequency	66
	5.3	Field Distribution	68
		5.3.1 Electric Field	68
		5.3.2 Gaussian and ESI Approximations	74
		5.3.3 Magnetic Field	77
		5.3.4 Field Lines	77
		5.3.5 Polarization	80
		5.3.6 Fiber and Mode Designation	82
	5.4	Intensity Distribution and Transmitted Power	83
	5.5	Phase Constant	87
	5.6	Phase Velocity	92
	5.7	Group Velocity	93
	5.8	Chromatic Dispersion	99
	5.9	Attenuation	104
		5.9.1 Attenuation Coefficient	105
		5.9.2 Atteruation by Rayleigh Scattering	109
		5.9.3 Attenuation by Intrinsic Absorption	111
		5.9.4 Attenuation by Impurity Absorption	112
		5.9.5 Reflection Losses	115
		5.9.6 Attenuation Caused by Nonlinear Effects	117
		5.9.7 Pure Bend Loss	118
		5.9.8 Transition Loss	131
		5.9.9 Microbending Loss	134
		5.9.10 Other Causes of Radiation Losses	139
6.	Hig	gher-Order Modes	142
		Field Distribution	142
		Cutoff Wavelength	147
	6.3	LP ₁₁ Mode	149
		6.3.1 Field Distribution	149
		6.3.2 Theoretical Cutoff Wavelength	152
		6.3.3 Effective Cutoff Wavelength	156
	6.4	Leaky Modes	161

	6.5 Cladding Modes	164
	6.6 Radiation Modes	165
	6.7 Dual Mode Fiber	165
	•	
7.	Launching of Modes	167
	7.1 Mode Orthogonality	168
	7.2 Launching by Coherent Illumination of the Fiber Front End	170
	7.2.1 Overlap Integral	170
	7.2.2 Excitation of the LP ₀₁ Mode by the Fundamental	
	Gaussian Beam	174
	7.3 Launching by Incoherent Illumination of the Fiber Front End	181
	7.4 Launching by Evanescent Field Coupling	184
	7.5 Miscellaneous Methods of Mode Launching	192
	7.6 Selective Mode Excitation	193
8.	Radiation from the Fiber End	
0.	8.1 For Field Dediction Dett	195
	8.1 Far-Field Radiation Pattern	195
	8.2 Relations Between the Near-Field and Far-Field Functions	205
9.	Joints Between Fibers	010
υ.	9.1 Loss Caused by Spot Size Mismatch	210
	9.2 Loss Caused by Transverse Offset	211
	9.3 Loss Caused by Transverse Offset	213
	9.3 Loss Caused by a Gap	214
	9.4 Loss Caused by a Tilt	215
	9.5 General Loss Formulas 9.6 Mode Conversion at Joints	216
	9.7 Joints Between Multimeds and Circle Med. Etc.	218
	9.7 Joints Between Multimode and Single-Mode Fibers	218
10	. Spot Size and Width of the Radiation Pattern	221
	10.1 Definitions for the Width of the Near-Field	221
	10.1.1 Simple Definition of the Spot Size	$\frac{221}{222}$
	10.1.2 Spot Size Related to Launching	$\frac{222}{223}$
	10.1.3 Spot Size Related to Microbending Losses	
	10.1.4 Spot Size Related to Waveguide Dispersion	225
	10.1.1 Spot Size Related to Waveguide Dispersion	226
	10.1.6 Other Definitions for the Spot Size	227
	10.1.7 Relations Between the Different Spot Sizes	228
	10.2 Definitions for the Angular Width of the Far-Field Radiation	229
	Pattern	000
	10.2.1 Simple Definition of the For Field Wilth	233
	10.2.1 Simple Definition of the Far-Field Width	234
	10.2.2 Far-Field Width Related to Launching	234
	10.2.3 "Strange" Definition for the Far-Field Width	235
	10.2.4 Effective Far-Field Width	235
	10.2.5 Other Definitions for the Far-Field Width	236
	10.3 Relations Between the Near-Field and Far-Field Widths	236

11.	Sign	al Transmission Through Single-Mode Fibers	23 8
	11.1	Optical Transfer Function	239
	11.2	Baseband Transfer Function	239
		11.2.1 Systems with Intensity Modulation	241
		11.2.2 Coherent Systems	251
	11.3	Impulse Response	253
	11.4	Transmission of an Analogue Signal	253
	11.5	Pulse Transmission	256
	11.6	Sources of Signal Quality Impairment	264
		11.6.1 Interference with the LP ₁₁ Mode	264
		11.6.2 Wavelength Chirping	267
		11.6.3 Mode Hopping	268
		11.6.4 Mode Switching	268
		11.6.5 Mode Partitioning	269
		11.6.6 Mean Wavelength Shift	270
		11.6.7 Optical Feedback	270
		11.6.8 Multiple Reflections	272
		11.6.9 Self-Amplitude Modulation	272
		11.6.10 Polarization Selective Loss	272
		11.6.11 Polarization Mode Dispersion	272
		11.6.12 Polarization Mismatch	276
12.	Con	nponents for Single-Mode Fibers	277
	12.1	Fiber Ends	278
		12.1.1 Preparation of High Quality Fiber Endfaces	278
		12.1.2 Low Reflectance Fiber Ends	280
		12.1.3 Reflecting Fiber Ends	280
	12.2	Couplers	281
		12.2.1 Beam to Fiber Couplers	281
		12.2.2 Source to Fiber Couplers	285
		12.2.3 Couplers to Integrated Optical Waveguides	290
		12.2.4 Splices	292
		12.2.5 Connectors	300
		12.2.6 Fiber Tapers	304
		12.2.7 Optical Rotary Joints	307
		12.2.8 Cladding Mode Strippers	307
		12.2.9 Attenuators	3 08
		12.2.10 Power Splitters and Combiners	309
		12.2.11 Directional Couplers	310
		12.2.12 Star Couplers	316
		12.2.13 Fiber Taps	316
		12.2.14 Mode Filters	318
		12.2.15 Mode Converters	319
	12.3	Wavelength Selective Components	319
		12.3.1 Wavelength Filters	319
		12.3.2 Dispersion Compensators	320

		12.3.3 Wavelength Multiplexers and Demultiplexers	32
		12.3.4 Fiber Resonators	328
13.	Mea	asuring Techniques	332
	13.1	Optical Sources and Detectors	333
		13.1.1 Sources	333
		13.1.2 Detectors	335
	13.2	Measurement of Optical Power and Insertion Loss	337
	13.3	Measurement of Fiber Attenuation	338
		13.3.1 Cut-Back Method	338
		13.3.2 Attenuation Caused by Absorption	341
		13.3.3 Attenuation Caused by Scattering	342
		13.3.4 Attenuation Caused by Macrobending	342
		13.3.5 Attenuation Caused by Microbending	343
		13.3.6 Attenuation of the LP ₁₁ Mode	344
	13.4	Backscattering Method	348
		13.4.1 Backscattering Setup	348
		13.4.2 Theory of the OTDR	349
		13.4.3 Evaluation of Backscattering Signatures	355
		13.4.4 Design and Performance of Practical OTDR's	359
	13.5	Measurement of the Near-Field Intensity Distribution	368
	13.6	Measurement of the Far-Field Radiation Pattern	371
	13.7	Measurement of the Spot Size	374
		13.7.1 Spot Size Determined from the Field Distribution	374
		13.7.2 Transverse Offset Method	376
		13.7.3 Aperture Methods	381
		13.7.4 Mask Methods	387
		13.7.5 Noncircular Mode Fields	390
		13.7.6 Comparison of Methods for Measuring the Spot Size .	390
	13.8	Measurement of Cutoff Wavelength	
		13.8.1 Bending Method	393
		13.8.2 Power Step Method	394
		13.8.3 Spot Size Method	396
		13.8.4 Refracted Power Technique	398
		13.8.5 Near-Field Method	399
		13.8.6 Pulse Height Method	400
		13.8.7 Polarization Method	401
		13.8.8 Coherence Method	402
		13.8.9 Refractive-Index Profile Method	403
		13.8.10 Far-Field Method	404
		13.8.11 Transverse Diffraction Method	404
		13.8.12 Interference Method	404
		13.8.13 Miscellaneous Methods	405
		13.8.14 Comparison of Methods	406
	13 0	Measurement of Chromatic Dispersion	407
	10.0	13 9 1 Pulsa Dalay Mathad	408
		13.9.1 Pulse Delay Method	410

13.9.2 Phase Shift Method	413
13.9.3 Interferometric Method	414
13.9.4 Spot Size Method	417
13.9.5 Miscellaneous Methods	419
13.9.6 Comparison of Methods	421
13.10 Measurement of the Refractive-Index Profile	422
13.10.1 Index Profile of the Preform	422
13.10.2 Index Profile of the Fiber	425
13.11 Miscellaneous Measurements	430
List of Symbols	431
References	441
Subject Index	507

1. Introduction

1.1 Historical Note

Single-mode fibers are dielectric waveguides for optical waves. Although dielectric waveguides have a history that goes back as far as 1910 [Hondros and Debye 1910], they have never been used for long distance communication at microwave frequencies because of the losses in the dielectric materials available.

Then, in 1966, Kao and Hockham [1966] proposed to use glass fibers as dielectric waveguides at optical frequencies for long distance communications. At that time, the attenuation of the best optical glasses available was of the order of 1000 dB/km. However, mainly by purifying the materials, it has been possible to reduce the losses by several orders of magnitude: In 1972, fibers with an attenuation below 20 dB/km were reported [Kapron et al. 1970a,b]. At present, fibers with an attenuation as low as 0.2 dB/km are commercially available, and a large number of lightwave communication systems are in use.

Because of the availability of semiconductor light sources and silicon photodetectors and the difficulties of jointing single-mode fibers, the first generation of optical communication systems used multimode graded-index fibers at wavelengths of about $0.85\,\mu\mathrm{m}$. For repeater distances of typically $10\,\mathrm{km}$, they could transmit a binary signal with a maximum bit rate of about $100\,\mathrm{Mb/s}$.

Since the signal attenuation decreases with wavelength, it is advantageous to use longer wavelengths [Kimura and Daikoku 1977]. Therefore, in the second generation of fiber optic systems, the wavelength was shifted to $1.3\,\mu\mathrm{m}$, but multimode graded index fibers were still being used. Because of the smaller attenuation of about $0.4\,\mathrm{dB/km}$, link lengths of up to $50\,\mathrm{km}$ were possible; however, because of the spread in time delay for the several hundred modes propagating in multimode fibers, the maximum bit rate was of the order of $100\,\mathrm{Mb/s}$.

The third generation of fiber optic systems offered higher transmission capacities by using single-mode fibers, while continuing to operate in the 1.3 μ m band. Third generation systems operating at data rates of 565 Mb/s are presently being installed.

The loss minimum for silica fibers is at a wavelength of $1.55 \,\mu\text{m}$. The lowest attenutation ever reported is $0.154 \, \text{dB/km}$ at $1.55 \,\mu\text{m}$ [Kanamori et al. 1986]. Practical cables can have losses of $0.2 \, \text{dB/km}$. Because of this low loss, the fourth generation, which is still in its research and development stage, will use single-mode fibers at this long wavelength, thus allowing repeater spacings of more than $100 \, \text{km}$ and bit rates of more than $1 \, \text{Gb/s}$ [Lilly and Walker 1984].

Additional future generations of optical communication systems will use coherent optical carriers and heterodyne receivers, or fibers made of new low-loss materials like heavy-metal fluoride glasses instead of silica glass.

In 1983, the first single-mode system has been introduced into commercial use and it is to be expected that, in the future, single-mode fibers will dominate in long distance communication. Presumably, single-mode fibers will be used also for shorter links, e.g. in local area networks (LAN's) [Rocher 1985; Cochrane et al. 1986] or subscriber loops [Kaiser 1985; Krumpholz 1985a; Krumpholz 1985b; Kaiser 1986]. First, these systems will operate with cheap LED-emitters [de Bortoli and Moncalvo 1986], but later, the transmission capacity can easily be upgraded by replacing the LED's with semiconductor lasers. Far in the future, further upgrading may be accomplished by introducing heterodyne receivers and frequency division multiplexing [Kaiser 1985; Khoe and Dieleman 1985; 1986].

The history of fiber-optic communications, in general, has been reviewed several times [Miller S.E. and Tillotson 1966; Kapany 1967; Miller et al. 1973a: Miller et al. 1973b; Clarricoats 1976; Börner 1980; Li 1983; Suematsu 1983; Kapron 1984a; Niizeki 1984; Kapron 1985; Henry 1985].

In contrast to this, the history of single-mode fibers has been described only a few times [Hooper et al. 1985; Seikai et al. 1985; Hooper 1986]. Optical dielectric-waveguide modes in glass fibers were first analyzed [Snitzer and Hicks 1959; Snitzer 1961] and observed experimentally [Osterberg et al. 1959; Snitzer and Osterberg 1961] in 1959. When research on optical fiber communication started in 1966, the main interest was in single-mode fibers [Kao and Hockham 1966; Krumpholz 1970; Kao et al. 1970; Börner 1971; Krumpholz 1971]. However, because of the difficulties of launching and jointing, at the beginning of the 1970's, the interest shifted away from single-mode fibers to multimode fibers. However, at the end of the 1970's, it became obvious that the bandwidth of long graded-index multimode fibers is very limited, and single-mode fibers became very interesting again.

1.2 Multimode and Single-Mode Fibers

The relatively small bandwidth of multimode fibers is the main reason for the strong trend to introduce single-mode fibers with bandwidths that are wider by a factor of at least 100. With a view to the future, only single-mode fibers can be used when one wants to replace the present direct photo-receivers, which resemble the first crystal radio receivers of the 1920's, by more sensitive and frequency-selective heterodyne receivers. Moreover, most integrated optical components use single-mode dielectric channel waveguides, so that only single-mode fibers can be coupled effectively to integrated optical repeaters.

Other advantages of single-mode fibers over multimode fibers are that they have lower fiber attenuation, lower splice and connector loss, larger production

tolerances, lower cost, they preserve coherence and the degree of polarization, and exhibit useful nonlinear effects [Kapron 1984a]. In multimode fibers, attenuation and pulse broadening depend on the launch conditions, which makes these quantities difficult to define, to measure, and to calculate in advance. In contrast, in single-mode fibers, the propagation characteristics are independent of the launch conditions. The properties of single-mode fibers for long distance telecommunications have been compared with those of multimode fibers by Gambling and Matsumara [1979].

It has been argued in the past that it would be difficult to couple light into the tiny core of a single-mode fiber and that the losses at connectors and splices would be very high. However, in the factory one can nowadays couple a semiconductor laser to a short section of single-mode fiber, a so called pigtail, with a loss of about 3 dB. The pigtail can easily be fusion-spliced to the system fiber with an insertion loss of the order of only 0.1 dB. Today, single-mode fiber connectors with losses of less than 1 dB are also commercially available.

Because of the advantages of single-mode fibers, many optical and electrical engineers and technicians, as well as managers, in industry and in telecommunication administration, will have to study the principles and applications of single-mode fibers. Even those engineers who know multimode fibers will find that some concepts cannot be transfered to the new technology. For instance, it is easy to understand how light waves are guided by a multimode fiber: in step-index fibers by multiple total reflection of the rays at the core-cladding interface, and in graded index fibers by continuous ray bending. To understand waveguiding by single-mode fibers is far more difficult.

Because of the tiny core of single-mode fibers, the methods of geometrical optics [Cornbleet 1983] fail to describe the wave properties adequately. One has to use the more accurate and more complicated methods of wave optics for analyzing single-mode fibers. The concept of light rays of "zero" diameter cannot be applied. One has to consider light beams of finite diameter, which have a natural tendency to increase their width. Thus, diffraction effects have to be taken into account. Therefore, the ray path approach used with multimode fibers is no longer applicable, and electromagnetic field theory must be used.

Of course, most of the many textbooks on optical communications [Kapany 1967; Kapany and Burke 1972; Marcuse 1974; Arnaud 1976; Unger 1977a; Miller S.E. and Chynoweth 1979; CSELT 1980; Adams 1981; Barnoski 1981, Grau 1981; Marcuse 1981a; Sharma A.B. et al. 1981; Marcuse 1982a; Okoshi 1982; Kersten 1983; Snyder and Love 1983; Cancellieri and Ravalioli 1984; Unger 1984, Unger 1985; Geckeler 1986a] also report on the wave theory of fibers, from which one can deduce information on wave propagation in single-mode fibers. However, the complexity of the theory even for the simple step-index profile makes it difficult to extract general rules for the properties of single-mode fibers. Special properties of single-mode fibers are described in more than 4000 original publications in the literature. Since these papers are scattered over about 20 technical journals, it may be difficult to locate a paper covering a special problem.