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Foreword

Whatever man does he strives to do in the “best” possible manner. In
attempting to reach a desired goal in an “optimum” fashion, he is faced
immediately with two problems. The first of these is the decision of choosing
the goal itself—the “payoff.” For what is one man’s optimum may well
be another man’s pessimum. Here he may decide to ignore the desires of
the other interested parties and to choose a payoff solely on the basis of
his own interests, whether or not these are in conflict with the interests of
others. Thus, the scientist who wishes to carry out experiments using
satellite-borne apparatus may desire an optimum ascent trajectory which
results in maximum payload in orbit, even if such an “optimum”’ trajectory
involves excessively large accelerations which are not tolerable from the
point of view of the structural engineer whose job is the design of the carrier
vehicle. On the other hand, he may temper his choice of payoff by consider-
ing the interests of others, that is, by imposing restrictions on the optimal
policy so as not to violate the requirements of other interested parties.
Consequently, the scientist may be forced to accept a somewhat smaller
payload in orbit by placing bounds on the accelerations, resulting in loads
which are tolerable and hence acceptable to the structural engineer. But
even if a payoff and constraints agreeable to all parties involved can be
decided upon, there still remains the choice of technique to be used for
arriving at the optimum. It is primarily to this latter question that this
book addresses itself.

During the past decade there has been a remarkable growth of interest
in problems of systems optimization and of optimal control. And with
this interest has come an increasing need for methods useful for rendering
systems optimum. Rising to meet this challenge there have sprung up
various “‘schools,” often championing one method and regarding it superior
to all others. Long experience has shown that life is not so simple, that the
picture is not all white and black. In short, one may expect that a particular
method is superior to others for the solution of some problems—rarely for
all problems. Furthermore, since the basic mathematical formulation of
optimization problems is often essentially the same in many approaches,
it is not unreasonable to expect that there may be a great deal of similarity
among various methods, a similarity—often, indeed, an identity—which is
obscured by dissimilarities in language and notation. To help the uncom-
mitted in his search for and choice of the optimum optimization technique
is the fundamental aim of this volume.

vii



viii Foreword

To accomplish this aim there are assembled in one book ten chapters
dealing with the various methods currently espoused for the solution of
problems in systems optimization and optimal control. The choice of
authors has been dictated solely by a consideration of an author’s interest
and expertness in a particular method. With the advantages of such an
eclectic approach and the ensuing multiple authorship there comes some
loss of smoothness of over-all presentation, for which the Editor must take
the sole blame. On the one hand, correlation between the various chapters
has been achieved by cross-referencing; on the other hand, each chapter
can be read as a separate entity setting forth the technique championed by
a particular “school.”

While each of the ten chapters dealing with methods includes simple
examples, primarily for didactic purposes, it has been thought useful to
present four additional chapters dealing with applications alone. Of these,
the first three, Chapters 11-13, cover specific optimization problems, and
the final chapter contains a discussion of problems in the optimization of
a complete system, in this case a nuclear propulsion system.

A word concerning coverage is in order. Whenever a method or peculiari-
ties in its applications are not treated in standard works of reference, these
points are covered in detail; such is the case especially in Chapters 1-7.
When a technique is fully exposed in readily available sources or when
applications to acrospace systems are as yet sparse, the method is presented
in outline only, together with appropriate remarks concerning its applica-
tion to the systems under discussion; this is largely so in Chapters 8-10.
Niceties in notation for their own sake have been avoided in order to make
the subject matter accessible to the widest possible audience which may
include engineers, scientists, and applied mathematicians whose training
in mathematics need not have progressed past the first graduate year of a
standard engineering curriculum.

GEORGE LEITMANN

Berkeley? California
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2 Theodore N. Edelbaum
1.1 Necessary Conditions for Maxima or Minima

L.11 Introduction—Variational Terminology

The theory of ordinary maxima and minima is concerned with the prob-
lem of finding the values of each of n independent variables Ty, Ty ***, Ta
at which some function of the n variables f(x1, s, « - -, z,) reaches either a
maximum or a minimum (an extremum). This problem may be interpreted
geometrically as the problem of finding a point in an n-dimensional space
at which the desired function has an extremum. This geometrical inter-
pretation can be helpful in understanding this type of problem, particularly
when there are only two independent variables. A representation of such a
problem is shown as a contour map in Fig. 1.

A

3
2 F

3

X

Fia. 1. Extrema and stationary points.

The independent variables are z, and z; while the dependent variable
Y = f(z1, 22) is represented by the contour lines. The maximum of the-
function is located at point 4 at the top of a sharp ridge where the deriva-
tive of y with respect to both x; and 2, is discontinuous. A second but lower
maximum is located at point B which is “higher” than all points in its im-
mediate vicinity. The highest of all the points in a suitably defined region,
such as point A for the region shown, is called an absolute maximum while &
point, such as B, that is higher than all the points in a suitably defined small
neighborhood is called a local maximum.

The derivative of y with respect to z; and x, at point B is equal to zero.
A point at which a function has all its partial derivatives with respect to the
independent variables equal to zero is called a stationary point. The fact
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that a stationary point need not represent a local extremum is illustrated by
point C. Point C represents the highest point in a “pass” between the
“mountains” on either side. There are both lower points (along the pass)
and higher points (towards the mountains) in the immediate neighborhood
of C. A stationary point of this type is called a saddle point.

The minimum of the function y does not occur in the interior of the region
illustrated but occurs on the boundary of this region defined by z;=0, 5
and z, = 0, 5. Along the boundary z, = 0, a local minimum occurs at point
D, while it occurs at point E along z» = 5 and at point F along z, = 5.
The boundary z; = 0 has two local minima, one at each end of the interval
in which the function is defined. It should be noted here that the ‘“suitable
neighborhood” for the definition of a local minimum does not include
points outside of the region of definition of the function. The absolute
minimum must be found by comparing the values of the local minima
D, E,F,G, and H.

The basic problem of the theory of ordinary maxima and minima is to
determine the location of local extrema and then to compare these so as to
determine which is the absolute extremum. The example of Fig. 1 illustrates
that a place to look for local extrema is along discontinuities in the first
derivative and also along boundaries (another type of discontinuity). Where
the function and its derivatives are continuous the local extema will always
oceur at stationary points although, as point C illustrates, stationary points
are not always local extrema.

1.12 Necessary Conditions for Maxima or Minima

The existence of a solution to an ordinary minimum problem is guar-
anteed by the theorem of Weierstrass as long as the function is continuous.
This theorem states!:

Every function which is continuous in a closed domain possesses a
largest and a smallest value either in the interior or on the boundary
of the domain.

There is no corresponding general existence theorem for the solutions of
problems in the calculus of variations, a circumstance which sometimes
leads to difficulties. It should be noted that this theorem does not require
the derivatives to be continuous so that the theorem applies to problems
such as the example of Fig. 1.

The location of extrema in the interior of the region may be determined
from the following theorem?:

A continuous function f(zi, 22, *--, %) of n independent variables
Ty, T3, *+*, T, attains a maximum or a minimum in the interior of a
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region R only at those values of the variables z; for which the n partial
derivatives f;,, fu, -+, fz, either vanish simultaneously (a stationary
point), or at which one or more of these derivatives cease to exist (are
discontinuous).

The location of the stationary points may be found by simultaneous
solution of the = algebraic equations obtained by setting the n partial
derivatives equal to zero. The question as to whether these stationary
points constitute extrema will be considered in the next section.

The theorem of Weierstrass indicates that the extrema may occur on the
boundary of the region. If the problem is an n-dimensional one, the search
for an extremum on the boundary will generally lead to one or more ordi-
nary minimum problems in n—1, n—2, ---, 1 dimensions. A good illu-
strative example of this is given by Cicala.? He considers a 3-dimensional
problem where the function is defined in a cubic region. The complete
solution of this problem requires the determination of the extrema on each
of the 6 sides and on each of the 12 edges and comparison of the values of
these extrema with the value of the function at the 8 vertices and at the
extrema in the interior of the cube. A spherical region, on the other hand,
requires only the determination of the extrema on the unbounded spherical
surface and in the interior. The determination of the extrema on boundaries
which are not coordinate surfaces may be considered as a problem with a
subsidiary condition, to be considered in Section 1.3.

The existence of discontinuous first derivatives along lines, surfaces, etc.,
also requires the solution of extremal problems in 1, 2, ete., d]mensmns
The methods of Section 1.3 are not as satisfactory here because most of
them require the existence of all partial derivatives. The substitution
method of Section 1.31 is applicable in many cases.

1.2 Sufficient Conditions for Maxima or Minima

1.21 Introduction

The theorem of the preceding section states that an extremum in the
interior of a region must occur at either a stationary point or at a point
where one or more first partial derivatives are discontihuous. However,
neither stationary points nor discontinuities have to be extrema. When the
location of stationary points or points of discontinuity has been determined,
the question as to whether or not they constitute extrema still has to be
answered.

There are several methods of answering this question. Probably the most
widely used method is the obvious one of direct, comparison of the values of
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the function at stationary points, discontinuities, and at the boundaries. In
spite of its simplicity, this method is the only rigorous method of deter-
mining absolute optima and is the only common method of treating dis-
continuities. The methods of the last section provide a means of deter-
mining all of the possible locations for both local extrema and the absolute
extremum. A comparison of all these points is all that is needed for a rigor-
ous determination of the absolute extremum even though it will not
determine which of the other points is a local extremum.

In practice, the physical interpretation of the mathematical model will
often result in an “obvious” determination of the extremal character of
some stationary point. For many practical problems this intuitive result
will be sufficient, although few of us are blessed with infallible intuition.
The determination of the value of the function at a few neighboring points
will often help to reinforce intuition. However, it should be realized that the
investigation of many neighboring points eannot provide a rigorous proof
of even a local extremum. Failure to realize this has led to serious errors in
the past in calculus of variations problems and can lead to serious errors in
ordinary minimum problems involving many independent variables.

If it is impractical to determine the values of the function at all possible
stationary points, discontinuities, and boundaries, all that can be de-
termined is whether or not a given point constitutes a local extremum. In
many problems the determination of local extrema may be all that is
desired. Sections 1.21 and 1.22 will consider the necessary conditions for a
stationary point, having continuous second derivatives, to constitute a
local extremum. Necessary conditions for points where the first derivatives
are discontinuous are treated by Hancock.*

Excellent examples of the detailed proof that a solution is an absolute
extremum may be found in Horner® and Munick et al.®

1.22 Two Independent Variables

The behavior of a function f(z, %) in the vicinity of a point (a, b)
may be determined by means of & Taylor series expansion:

f(zy, 22) = f(a, b) + fala, b) (21 — a) + fu(a, b) (32 — b)
+2i‘{f=m(a,b) (21 — 8)% + 2fures(a,b) (21 — @) (73 — b) + fasma(a,) (22 ~ b)2]

Heee (L)

If the point a, b is a stationary point of f(z1, z2) the two first order terms
will be zero. It is necessary to examine the three second order terms in order
to determine whether @, b is & maximum, a minimum, a saddle point, etc.
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The sum of the three second order terms will always be positive, so that
a, b will be a local minimum if

lell > 0
(1.2)
Faieiferes — (Ferzg)® > 0
the function will be a local maximum if
fzw; < O
(1.3)

Jeorfases — (farza)* > 0

In exceptional cases extrema may occur when the inequality in the
second of Egs. (1.2) and (1.3) becomes an equality. These cases are dis-
cussed by Hancock,* pages 20-69.

1.23 n Independent Variables

The corresponding sufficiency conditions for n variables may be expressed
concisely by using a notation similar to that of Leitmann.” The necessary
condition for & stationary point to be a local minimum is that

D:>0, =12+ n (1.4)

The necessary condition for a stationary point to be a local maximum is
that

Di>0, i=246,-:-
(1.5)
D;<0, §=1,35, %4
where

lezl Soiwa v Sz
Jrazy Jegrs o0 fxm
. . . .

. % .
fz.'zl fz.'rz SR fﬂzi

A special case of this equation is the well-known sufficiency condition
for a maximum or minimum of a function of one independent variable:

for SO



