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CHAPTER '_I"

BASIC PROPER'I‘IES OF ERIGONQIEI‘RIC INTEI}RALS
Trigonometric Integrals Over F:Lnite Interva.la

e

by 'e(t) Hence we shall write J(a) as

3(a) -=ff(x)e(ax) ax .

-im because J. J. Fourier provided the first mcentive to the a_‘ _
't.hese intagrals {2]. i :

‘,7 'He shall a:l.so frequently use the mbols 7, H, J to denote re:
he | function, the Hankel function and the Bessel fmmction
~spec uses a.t times will be evident from the context.

: 1 iy




where 1’ (x) a:m f (x) are real va.lued runctions as
d. For daali.ng with such ﬁmctions, ef. Appendix 2. We

d.gn, will first of all 6. mtegrable on each finite interval, am

teke as a basls the integral concept of Lebesque. Thus we assume :

sutomatically, any given function is measurable (Lebesgue) in its
tent and "summable" (I.ebesgue) in every finite interval.

If the limits of integre.tion & and b ere the same for the

s

T(@) - ola) + 4a)
20@) = J(a) + J(a);  21¥a) = Ia) - ()

of ‘the slmila.rity in construction of ¢(x) and !.Ir(a), we sha.lll
tly prove a statement for only ome of the threse integrals, and when

t‘ev is an obvious one, assume its correctness for the other two. -
in addition,

sl-a)in ala)s Wla) s —W(a)

1
(=) = T

: :
3, (a) =fm‘5e(ax’) ax
: a
¥ E < ‘ :
o i‘unction “£,(x) = TTX), 1t will suffice for the study of the
e(c), W(cx) and J(a) to limit ourselves to one of the half

2 ,'_,z 0 or ag o. AS 8 rule, we shall favor the right half linea

3 At least one of the two limits.of the definite integral with
ha.ll be concemed, will in general, be mrinite. To- simplify

lo wer limit when its value 1s - w¢ The mtegral

f:f(x) coS ax dx
0

3




f'f(x')e,(ax)- dx -

over the mtewa.l - =, ],

“ 4. A basic property of the trigonmatric mtegra.ls w.tth
~ shall immediately concern ourselves is that they becoms, "in general
- arbitrarily small for large values of a. In this section we shall r
'~ ourselves to the case where the limits of integration are finite, and 9
to a discussion of the integral (3). ; 53

. If the function f£(x) has no qualifications attached to 11;
the integral (3) is merely a special case of (k). The integral (3)
(k) 1f, outside of (a, b), the function f(x) 1s extended by means

- zero values; 1.e., if f(x) 1s extended, by means of the stipulatl
"f(x) =0 1f x# (a, b)", to & function defined in [- ®, w]. This
~assertion is not true, however, £ £(x) has restrictions assigned
For example, 1f it is required that f(x) be differentiable, then

.& special case of (4) only if £(x) vanishes for x =& and X =
since ‘only then is the new function which arises by a.ssigning zero
outside (a, b) differentisble in (- w, =] (cf. Appendix 8).

s after 1ts extension in [~ =, »] 4is intended to be continuo
dé;frarentiable, theh not only must it be continuously differentiabl
(8, b) but the function and its deriva.tive must also both van.tsh for

Our gssertidn até,tea 'l:ha.t:2

J(@) —> 0 as sl Tt Al
e :
f(x) 1s differentiable in (a, b) a.nd if ve denote by M, a bo
(x) and also of :
b z
[ ierxiex

a “

then 1t follows from

1 (A, u) will mean the intervel i ¢ x < us [n, p] the mterva.‘l.
A < X< pe Mixed brackets will a.lso employed so that (a, ul w:LlIL" e
€ X< pue : ' XL

b8
k 7
2 e sha1l write for the limit, with 1o difference in meaning, either 48
1im £(¢) = h or f(&)-——)h Y

»




J(“)-*f + f = J,(a) + Jy(a)
T i ;

riﬂ for Jl (o) a.nd J (a), then it 1s evidently also ;
Sl similar reasoning would ‘apply 1f more intervals were ;
( 5) is valid for a plecewlse differentisble runction, in
piecewise cdnatant ﬁmctian ("step function") : 3

: (Mtegrable) function. Let‘ f(x) and = (x) be two fun;c‘

it a8 :
[ i@ - g @iaxg e

a
eorresponding mtegrals J(a) ‘and J' (a), one has

[J(cx) = 33 (a)i = f (f(x) £,(x))e(ax) dxl
: - : .
f I£(x) - f,(x)jax g e .

a

\

Hence there exists an a(e) such that

19, g e

for a3 ate),

19(@)] ¢ 13,6)] + 136) - 7,()] g 2e




s ep-fiunc B f, (x) which sat
: 1t follows that: : :
> For each function' f(x)
\ v b & &
f f(x)e(ax) ax —> o
SRt

5. We observe that J(a) is a continuous function, a.nd this
; fact can be proved as f'ollows~

BRI p) - el f I otox) - tfax g M(p) [|f<x)1ax

i where M(p) 1s the meximum of “Ie(bx) - 1] in the interval (a, B
. 1f o —= 0, then M(p) —> 0. — w(a) ‘and ¥(a) are also oon‘timm
' rtmm:ions, cf. 2

§2. Irigonometric Integrals Over Infinite Intervals.

. 1. We say that the function g(x) 1s integrable 1n [a, e,u,]-r;
the mtegral j

A
fs(X)dx
a

approaches a finite limit as A —> w. We denote this limit by

{ ﬁ;(x)dx."

Ve shall also say that the integral (1) "exists" or that it "convex;geé'-?;

! Since the function r(x) ocours under the inte; gral sign, it will be
ttao;l.tlg assumed, as agreed to in our previous statement, that 1’c is :Ln-
€.

s a.ragra.ph 2 of the present section is meant. Each section g divided
into several paragraphs. A simple number denotes a lgg.r ph, and a m
‘bracketed number a formula. Therefore (5) denotes t fomrula €50,
the par agraph or formula 1s quoted from other sections, then the number of
: the section is stated in advance. Thus §51, 3 denotes paragraph 3 of §51,
§51: (9), the fomula (9) of §51.

%Fﬁ PDFLﬁlﬁlﬁJ WWW ertongbook com




iﬁhanever a t‘mot:ion g(x)»-;hua a cbrtaz.n preperty in a.' Bazb-
el {A, »] or [- e, B] of its interval of definition, then we -
,a.lso say that it has this property a8 X —> o oOr as x ---> - by

Since for each A > &, the integral (1) along with

fs(x) dx

eomrarges or does not converge, 1t follows that the function g(x)
,1ntegra.ble in' - [8;"«] 3Ff 1t 45 mtegrable 88 X —> .

It is a basic property of the Lebesgue integral, that in a finite
rvel, each integrable function is also absolutely :!_ntegrable. Hence
- of the functions considered heretofore 1s, in each finite 1nterva.l,
solutely integrable. The same assertion, however, cannot be made if the-'
nterval of integration is infinite. If g(x) 1s integrable &8 X —> =
: :mlthe sense of our definition, then lg(x)l need not be also integrable =
a8 although the converse does hold. Next, if f(x) 1s
la, »] then because [f(x) sin ax| ¢ |f(x)|,

$isz

lﬁ(a) -ﬁ'(x)‘-sin' ox dx
8

es for all values of ' a. Again ¥{a) —> 0 a3 a —> + =. This
deducible from -

. A . p
W] [26) stnax ax|+ [iee)] ax .
a A

2 the second integral on the right is 1ndependent of a, 1t can be
e, by a sultable choice of A, smaller than e. With A fixed, the
mtegral will become smaller than e for |a| 3 a(e). Hence for

l(a)] ¢ 26 ..

fi*'esﬁo_nding assertions are velid for ¢(cx) and J(a).

: - For example, let f(x) = e'kx, k>0 and a = 0, and let us
calculate J(a), the simplest of the three. From :

fAe—(k-ia)x & Ic"-‘lm(‘ . e-kAe(aA)>

0




_one obteins, by letting A —> », and by separating the real and imaginary

-In particular, let o(x) = sin ex, a > 0. From

b
(5) ' fp(x) sin ax dx g-‘?—gﬁl
8 -
Now in (a, =], let the function p(x) decrease monotonically to zero.
From
Al :
(6) Jr p(x) 8ln ax dx} ¢ § p(A) - ad> 0o,

§2.. INFINITE INTERVALS

parts

: _(u) fe"kx cos ax dx = -—2-]"—3, fe'kx sin ax dx = —5-—9‘—5 ot

o k¥ + « /4 k° + «

Both expressions actua.lly approach zerc as o —_— t > {4]. ’
As regards behavior at infinity, an important cla.ss of functions o

which need not be absolutely integrable are monotonic functions. I1ei the st

{real valued) function f£(x) converge wonotonically to zero as x ——o o,

i.e., iet it be monotonic in a certain interval [A, =], and convergent & 4

zero as x —-> . Since we already have at our command integrals over iy

finite intervals, we can assume, therefore, that the point x = A co-

incides with the initial point x = a. A function wonotonic in [a, =]

which converges to zero as x —> « is, in 1ts entire range, either ;

positive and decreasing, or negative and increasing. Since an increasing

function becomes, by a change of sign, a decreasing one, we need consider

only the decreasing one.

2. We shall need the following theorem of analysis; the so-
called second ween value theorem of integration. If, in the interval
(e, b), the function o(x) is conti.nuous, and the function p(x) 1is
positive and monotonically decreasing, then in the interval (s, b) there
1s a value c between & and b for which

b c
fp(x)cp(x) dx = p(a.)fw(x) ax. s .
& a

¢
f 8in ax dx gg-
a ¥

it follows that

A




W(m‘)'-sf p(x) sin ax dx
i a X
eiwgem: for a> 0. VWe_"‘can now allow A' 1n (6) to becomeinﬂnit E'q,.; =

e 5 0 DS % % =

. f (x) ainaxdx g-gp(A) .
A

; /mmue that w(a) .,..__> o as o —> . Summarizing, we fdmué.f'r"
éne follewi.ng theorem. : :

mm B in [a, =], the function £(x) ‘under
consideration, as X —> =3 either
= hbe A8 a,bao}.utely :Lntegrable, or
e 2. converges monotonically to zero,
~ then the integrals. ¢(a), w(a), J (a) exist fcr
e :

B:
(]

2. all a# o, .
&nd converge to zero as « e B {5].
'l‘he mstriction o # 0, made under 2 a.pplies only to ¢(x) and :
For a function decreasing monotonically to zero, it 1is not m?-
‘that the integral - -

¥y

: ff(x) ax ,

‘ should represent the value ¢(0) or J(o), converge (for examﬁle
=1 /x).v '

NOV let f(x) be representable in the form
£(x) = g(x) sin px ,

mrefp 18 a constant, a.nd g(x) approaches zero monotonically. By




- THEOREM 1a. The assumption 2.1n'M 1 ca.n ba
: ‘yﬁ. general:\*.zed by setting 4 TR

2 = g(x) m-(m;,g})}ﬁ

—where p and q are con.ste.nts, and s(x‘) appfoaches
zero monotonically as X —=> m. Hovever, the :Ln-‘ 3
tegrals need n.ot converge for the ve.lues a =+ p 531

THEOREM 1b. A further genera.lization of- ‘the theorem
‘results if the factor cos ax or sin ax 1n o(a)
and ¥(a), 1s veplaced by cos d(x - t)uliey o
8in a(x - t),

[(51. ‘ ) : : N

This generalizatio.n can be justified by t.he tra.nsfomation &
Aﬂ x - t. s # 2]
2k Ana.logdus statements are valid
and for the ent.tm ;inte‘rval [- o,

fg(x) dx

‘ncn':ve'rg'e;- In this sense, we shall later on atte.ch to the f‘umtion
the vs‘pecial integral % : <

S

E(d,) =—-2—1;f f-(x)e(- ax) dx

£(x). The integral




e ', =
S - T

: J(a) = 2x E(- a) e

From'tha abm ve see that E(a) exista for all a 40, and Marges
,to zem &8s a —> + =, provided £(x) 1is either absolutely convergent or
“ihes 2610 monotonica.ng not only ga n~> @ but also as x — m.;

e ﬂ{ then the mtegral =

B,\‘ur':der,*i‘heorem 1, becamsein the interval (a, =], the function
) = 1/% decreases momtom.chlly to gero. On the other hand f(x) 18
not integreble in the interval [0, al, and therefore not in [0, w].
Although the vhole integra.nﬂ x‘“"*sm ax 1is reguler there, and hence the
Z'mtegra.l i o
wia) = f—-——-——-smx“x ax
-
,.eiists fo:*dl o, mxw(a) is not convergent to zeroc as ‘@ -—u-) n.-. 'rhe
a.nsromht‘!m ax = ¢, a> 0 yields for example

fsi_naxdx [’ ®l

R

Bence W(a) is constant Tor & > 0, e.nEi_this constant, as we shall see
_lata!' 1n tk, 1s d:.rfemt from zero. / :

53'. Order of Ma.gnitude of Tr_igonomeiric Integrals

" 1. The question arises whather an assertion can be made with
rega.rd ‘to the repidity with which ¢(a) and ¥(a) decrease to zero &s
‘@ —> . According to Lebesgue, if the function f(x) is only known 1:9
be (absolutely) integrsble, no statement of this kind cen be wade even i!‘
_,.the Ainterval hasppens to be finite. Rather, it can be shown that these
= _MQgrals can decresse to zero arbitrarily slowly [7]. The situation
cma ﬁowever, a2l mre preeise information about the function f(x) is
avallsble. If £(x) 1s monotonically decreasing in (&, b) or mono-

ically dem&amg to zero in (a, =1,  then by §2, (5), there exists a
constant A, snch that fa o> 0

‘;




h’(a)l s A a-L " s ‘ ..‘ .
which can be written with the familiar Landau symbol B TEa oy
(1) 5 . W) =00") .

We recsll the meening of this symbol. Let o(¢)> 0 88 ¢ —> .
Then f(t) = Ole(t)] states that the guotient P,

£(0)/o(8) ‘ ¢

1s bounded as 't —> =; and f£(t) = ole(g)] states that 1t ‘approaches’
_gero. If f(t) = Olo(e)l, -and £,(¢) = Ole,(k)], where o(t) < o,(t),

and 1f h(g) &nd h,(g) are bou;nded 8s §—> =, then fh + f h = O(Q‘).
Analogous statements are velid for the o-relation. : Xz

=r.

If f£(x) 1is differentiable, then (1) 1s valid for an interva.l
(:9., By, cf. §1, (6); Af f(x) has an absolutely integrable derivative and
epproaches zeroc as & —> =, then (1) 1s valid for an interval [a, =].
The last statement can be verified by means of the usual partlal integra-
~ tion formulas (Appendix 8): :
3 2

ff(x)sin axdx = % f(a)cos ca + -;-ff'(x)cos'axdx .
s a

2. That (1) holds on the one hand for monotonlc and on the other
hand for differentisble functions is no accident. There is in fact the
> following connection between them. If one knows that (1) holds for mono-
-t tonically decreasing functions, then 1t follows immediately that it also
FoA holds for monotonically increasing functions, and that it holds generally

for functions which can be represented as linear combinations (with complex
coefficients) of monotonic functions. We shall denote, as usual, these ?

~ last functions as funetions of bounded variation. For our purposes, we

shall not need the "true" concept of bounded variation. It will be
sufficlent for us to show directly, that each function which has an abso=-
lutely integrable dexrilvatiye 1s of bounded varistion in the sense stated
sbove. Since if )+ f'(x) is absclutely integrable, " £1(x) and
f'(x) are also, we need to prove our assertion only for reasl valued func-

% ; tions. Iet f(x) have an integrable derivative in (&, b). Then we can
: set : _ : :
: et o b :
£(5) = £{0) +f & = £1(8) a _f [£1Ce)) + £7(8) o
= S ' X = s ; %
(2)
2 : i = £(b) + h,(x) - hy(x).
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