THE VNR CONCISE LACYCLOPEDIA OF MATHEMATICS ECONO

W. Gellert · S. Gottwald M. Hellwich · H. Kästner · H. Küstner

CONCISE ENCYCLOPEDIA OF MATHEMATICS SECOND EDITION

W. Gellert · S. Gottwald M. Hellwich · H. Kästner · H. Küstner Editors © VEB Bibliographisches Institut Leipzig, 1975 Mathematics at a Glance First American Edition 1977 Second American Edition 1989

Library of Congress Catalog Card Number 88-26992 ISBN 0-442-20590-2

All rights reserved. No part of this work covered by the copyrighn hereon may be reproduced or used in any form or by any means graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems — without written permission of the publisher.

Made in the German Democratic Republic.

Published by Van Nostrand Reinhold 115 Fifth Avenue New York, New York 10003

Van Nostrand Reinhold International Company Limited 11 New Fetter Lane London EC4P 4EE, England

Van Nostrand Reinhold 480 La Trobe Street Melbourne, Victoria 3000, Australia

Macmillan of Canada
Division of Canada Publishing Corporation
164 Commander Boulevard
Agincourt, Ontario MIS 3C7, Canada

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Main entry under title:

The VNR concise encyclopedia of mathematics.

First published under title: Mathematics at a glance. Includes index.

I. Mathematics-Handbooks, manuals, etc. I. Gottwald, S.

II. Van Nostrand Reinhold Company.

QA40.VI8 1989 510-dc19 88-26992 ISBN 0-442-20590-2 THE VNR
CONCISE
ENCYCLOPEDIA OF
MATHEMATICS

It is commonplace that in our time science and technology cannot be mastered without the tools of mathematics; but the same applies to an ever growing extent to many domains of everyday life, not least owing to the spread of cybernetic methods and arguments. As a consequence, there is a wide demand for a survey of the results of mathematics, for an unconventional approach that would also make it possible to fill gaps in one's knowledge. We do not think that a mere juxtaposition of theorems or a collection of formulae would be suitable for this purpose, because this would overemphasize the symbolic language of signs and letters rather than the mathematical idea, the only thing that really matters. Our task was to describe mathematical interrelations as briefly and precisely as possible. In view of the overwhelming amount of material it goes without saying that we did not just compile details from the numerous text-books for individual branches: what we were aiming at its to smooth out the access to the specialist literature for as many readers as possible. Since well over 700000 copies of the German edition of this book have been sold, we hope to have achieved our difficult goal.

Colours are used extensively to help the reader. Important definitions and groups of formulae are on a yellow background, examples on blue, and theorems on red. The course of more complicated calculations is indicated by red arrows. Also, in the illustrations in the text colours show up the essential features. Ample examples help to make general statements understandable. Frequently the numerical calculations have been arranged separately so that a problem can be read as an explanatory text, without reference to calculations, while the latter can be regarded as worked examples with explicit details. Physical units, which occur in some examples, are given in the SI-system, which is coming more and more into legal and practical use. Everyday examples are given in everyday

units, both metric and others.

A systematic subdivision of the material, many brief section headings, and tables are meant to provide the reader with quick and reliable orientation. The detailed index to the book gives an easy access to specific questions.

In the plates at the end numerous photographs and colour plates help to make the material more

vivid and provide interesting glimpses of the history of mathematics.

We thank the authors of the various chapters, specially to acceding to our request for generally understandable diction even at the risk of deviating from the usual terminology. Above all in the brief reports on special topics many an author has found it difficult to be content with mere indications about a topic in which he is an expert.

Our particular thanks are due to our advisors, Professor K. A. Hirsch, Queen Mary College, University of London, and Professor H. Reichardt, Section for Mathematics, Humboldt University of Berlin. They have worked untiringly for the improvement of the book and have helped to create a work which is a reliable source of information for every user and should convince everyone that mathematics is essentially a simple and learnable discipline.

The Editors and the Publishers

Contents

Introduction	11
I. Elementary mathematics	
1. Fundamental operations on rational numbers 1 2. Higher arithmetical operations 4 3. Development of the number system 6 4. Algebraic equations 8 5. Functions 10 6. Percentages, interest and annuities 13 7. Plane geometry 14 8. Solid geometry 18 9. Descriptive geometry 20 10. Trigonometry 22 11. Plane trigonometry 24 12. Spherical trigonometry 26 13. Analytic geometry of the plane 28	17 17 17 17 17 17 17 17 17 17 17 17 17 1
II. Steps towards higher mathematics	
II. Steps towards higher mathematics 32 14. Set theory. 32 15. The elements of mathematical logic 33 16. Groups and fields 34 17. Linear algebra 35 18. Sequences, series, limits 38 19. Differential calculus 40 20. Integral calculus 44 21. Series of functions. 47 22. Ordinary differential equations 50 23. Complex analysis 51 24. Analytic geometry of space 53 25. Projective geometry 54 26. Differential geometry, convex bodies, integral geometry 56 27. Probability theory and statistics 57 28. Calculus of errors, adjustment of data, approximation theory 60 29. Numerical analysis 63 30. Mathematical optimization 65 III. Brief reports on selected topics 65	12361639070715703
31. Number theory 66 32. Algebraic geometry 67 33. Further algebraic structures 67 34. Topology 68 35. Measure theory 68 36. Graph theory 68 37. Potential theory and partial differential equations 69 38. Calculus of variations 69 39. Integral equations 70 40. Functional analysis 70 41. Foundation of geometry – Euclidean and non-Euclidean geometry 71 42. Foundations of mathematics 71 43. Game theory 72 44. Perturbation theory 72 45. The pocket calculator 73 46. Microcomputers 74	58078383517312

THE VNR
CONCISE
ENCYCLOPEDIA OF
MATHEMATICS

CONCISE ENCYCLOPEDIA OF MATHEMATICS SECOND EDITION

W. Gellert · S. Gottwald M. Hellwich · H. Kästner · H. Küstner Editors © VEB Bibliographisches Institut Leipzig, 1975 Mathematics at a Glance First American Edition 1977 Second American Edition 1989

Library of Congress Catalog Card Number 88-26992 ISBN 0-442-20590-2

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems — without written permission of the publisher.

Made in the German Democratic Republic.

Published by Van Nostrand Reinhold 115 Fifth Avenue New York, New York 10003

Van Nostrand Reinhold International Company Limited 11 New Fetter Lane London EC4P 4EE, England

Van Nostrand Reinhold 480 La Trobe Street Melbourne, Victoria 3000, Australia

Macmillan of Canada
Division of Canada Publishing Corporatio
164 Commander Boulevard
Agincourt, Ontario MIS 3C7, Canada

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Library of Congress Cataloging-in-Publication Data

Main entry under title:

The VNR concise encyclopedia of mathematics.

First published under title: Mathematics at a glance. Includes index.

- I. Mathematics-Handbooks, manuals, etc. I. Gottwald, S.
- II. Van Nostrand Reinhold Company.

QA40.VI8 1989 510-dc19 88-26992 ISBN 0-442-20590-2 It is commonplace that in our time science and technology cannot be mastered without the tools of mathematics; but the same applies to an ever growing extent to many domains of everyday life, not least owing to the spread of cybernetic methods and arguments. As a consequence, there is a wide demand for a survey of the results of mathematics, for an unconventional approach that would also make it possible to fill gaps in one's knowledge. We do not think that a mere juxtaposition of theorems or a collection of formulae would be suitable for this purpose, because this would overemphasize the symbolic language of signs and letters rather than the mathematical idea, the only thing that really matters. Our task was to describe mathematical interrelations as briefly and precisely as possible. In view of the overwhelming amount of material it goes without saying that we did not just compile details from the numerous text-books for individual branches: what we were aiming at is to smooth out the access to the specialist literature for as many readers as possible. Since well over 700000 copies of the German edition of this book have been sold, we hope to have achieved our difficult goal.

Colours are used extensively to help the reader. Important definitions and groups of formulae are on a *yellow* background, examples on *blue*, and theorems on *red*. The course of more complicated calculations is indicated by red arrows. Also, in the illustrations in the text colours show up the essential features. Ample examples help to make general statements understandable. Frequently the numerical calculations have been arranged separately so that a problem can be read as an explanatory text, without reference to calculations, while the latter can be regarded as worked examples with explicit details. Physical units, which occur in some examples, are given in the SI-system, which is coming more and more into legal and practical use. Everyday examples are given in everyday

units, both metric and others.

A systematic subdivision of the material, many brief section headings, and tables are meant to provide the reader with quick and reliable orientation. The detailed index to the book gives an easy access to specific questions.

In the plates at the end numerous photographs and colour plates help to make the material more

vivid and provide interesting glimpses of the history of mathematics.

We thank the authors of the various chapters, specially to acceding to our request for generally understandable diction even at the risk of deviating from the usual terminology. Above all in the brief reports on special topics many an author has found it difficult to be content with mere indications about a topic in which he is an expert.

Our particular thanks are due to our advisors, Professor K. A. Hirsch, Queen Mary College, University of London, and Professor H. Reichardt, Section for Mathematics, Humboldt University of Berlin. They have worked untiringly for the improvement of the book and have helped to create a work which is a reliable source of information for every user and should convince everyone that mathematics is essentially a simple and learnable discipline.

The Editors and the Publishers

Contents

Introdu	ction 11	
I. Eleme	entary mathematics	
1.	Fundamental operations on rational numbers	
2.	Higher arithmetical operations	
3.	Development of the number system	
4.	Algebraic equations 80	
5.	Functions	
6.	Percentages, interest and annuities	
7	Plane geometry	
	Plane geometry	
8.	Solid geometry	
9.	Descriptive geometry	
10.	Trigonometry 220	
11.	Plane trigonometry	
12.	Spherical trigonometry 261	
13. 90	Analytic geometry of the plane	
TT CA-	r an ang ang ang ang ang ang ang ang ang	
II. Steps	s towards higher mathematics Set theory	
14.	Set theory	
15.	The elements of mathematical logic	
16.	Groups and fields	
17.	Linear algebra	
18.	Sequences, series, limits	
19.	Differential calculus	
20.	Integral calculus	ì
21.	Series of functions	
22.	Ordinary differential equations	
23.	Complex analysis	
24.	Analytic geometry of space 530	
25.	Projective geometry	
26.	Differential geometry, convex bodies, integral geometry	
27.	Probability theory and statistics	
28.	Calculus of errors, adjustment of data, approximation theory	
29.	Numerical analysis	
30.	Mathematical optimization	
III. Brie	f reports on selected topics	
31.	Number theory	
32.	Algebraic geometry	
33.	Further algebraic structures 678	
34.		
	Topology	
35.	Measure theory	
36.	Graph theory 688	
37.	Potential theory and partial differential equations	
38.	Calculus of variations	
39.	Integral equations	
40.	Functional analysis	
41.	Foundation of geometry - Euclidean and non-Euclidean geometry	
42.	Foundations of mathematics	
43.	Game theory	
44.	Perturbation theory	
45.	The pocket calculator	
46.	Microcomputers 745	
TU.	WIRAUADHIDMICIS	

Plates

1 Archimedes
Poster of the town of Syracuse (Italy)

2/3 Mathematics in school I/II
Introduction of the number seven and revision exercises

4 Mathematics in industrial arts Surfaces of revolution in the design of a pottery set

5 Drawing instruments I Geometry sets

6 Drawing instruments II Slide rules

7 Drawing instruments III
Rulers, protractors, and French curves

Graph papers

Millimetre paper – doubly logarithmic paper – simply logarithmic paper – polar coordinate paper – triangular net paper – probability paper

9 From the earliest period of mathematics Clay vessels of the new stone age Early Egyptian surveying

10 Ancient Egyptian mathematics
Original text of the Hau problem in Demotic
writing and transcription of the same text
into hieroglyphics
Calculation of a frustum of a pyramid

11 Babylonian mathematics Cuneiform tablet with calculations of areas Section of the tablet above

12 Graeco-Roman mathematics The Elements of Euclid, first printed edition 1482 Roman hand abacus

13 Ancient Chinese mathematics
From a manuscript dated 1303
Bamboo sticks to represent numbers
Chinese slide rule (about 1600)

14 Ancient Hindu mathematics
Mathematical-astronomical buildings of the
17th century
Mathematical manuscript of the 16th
century

15 Arabic mathematics
Theorem of Pythagoras in an Arabic mathematical manuscript of the 14th century
Arabic astrolabe

16 Mathematics in Europe, 15th to 17th century Triumph of the modern algorithm (digital calculation) over the ancient counter reckoning (abacus) The use of Jacob's staff 17 Mathematics and the visual arts I
Ancient Egyptian mural: catching fish and
hunting birds in a papyrus thicket
Painting by Melozzo da Forli (1438–1494):
Pope Sixtus IV appoints Platina as Prefect
of the Vatican

The Applied Land Act

18 Mathematics and the visual arts II
Proportions of the human body
Drawings by Leonardo da Vinci and sketch
by Albrecht Dürer

19 Mathematics and the visual arts III Melancholia, copper engraving by Albrecht Dürer

20 Geometric forms in architecture and technology I
Egyptian pyramids near Giza
Tower of city walls
The old town hall of Leipzig

21 Geometric forms in architecture and technology II Modern water tower Cooling towers of a generating plant

22 Geometric forms in architecture and technology III
Obelisk in the great temple of Amun at
Karnak
Wedge as a cleaving tool
Hyperbolic paraboloid shells as roofs of
an exhibition hall

23 Famous mathematicians of the 15th/16th century

Regiomontanus – Simon Stevin – Albrecht

Dürer – Niccolo Tartaglia – Geronimo

Cardano – Jost Bürgi – Luca Pacioli

24 Famous mathematicians of the 16th century
Title page of Robert Recorde's 'Algebra'
Title page of Adam Ries's 'Rechnung auff
der Linihen und Federn ...'
A problem out of this book concerning the
purchase of livestock

25 From old arithmetic books Conclusion of a business deal at a calculating desk Calculation of the capacity of a cask

Two libraries
The mathematics room of the National and
University Library in Prague
Entrance to the Science Library of Erfurt
(Boyneburg portal)

27 Old mathematical aids I
Pedometer, 1741
Slit bamboo as counting stick
Tally stick

28 Old mathematical algo II

Counters or markers for arithmetic and an elaborate ben, it is century

Old mathematical algo III

Surveyor's compass, about 1600

Illustration of a red, by juxtaposition of 16 feet
16th century measuring rods with various graduations

31 Old measures II Set of weights Maremberg 1588 Hinged sun diel, avory

32 Famous marthematicians of the 17th century I

Title page of Discartes' 'Discours de la méthode'

René Descartes.

Prescons mathematicians of the 17th contary II

Prescois Victa – John Napier – Galileo Galilei – Johnnes Kepler – Buonaventura Cavalieri – Pierre de Fermat – James

Gamery
34 Passon mathematicians of the 17th/18th
contact I
Blaire Pascal
Gottfried Wilhelm Leibniz
Isaac Newton

35 Farmers manuscript of the 17th/18th confury II

Extract from a manuscript of Leibniz with the integral sign

The mechanical calculator constructed by Pascal in 1642

36 Famous mathematicians of the 17th/18th century III
Jakob Bernoulli
Johann Bernoulli
Daniel Bernoulli

37 Famous mathematicians of the 18th century I
Page from a manuscript by Euler
Leonhard Euler

38 Famous mathematicians of the 18th century II

Brook Taylor - Moreau Maupertuis - Johann Heinrich Lambert - Joseph Louis Lagrange - Gaspard Monge - Adrien Marie Legendre - Jean Baptiste Joseph de Fourier

39 Famous mathematicians of the 19th century I
Drawing by János Bólyai on non-Euclidean geometry
Nikolai Ivanovich Lobachevskii

40 Famous mathematicians of the 19th century II
Portrait of the young Gauss
Gauss in his old age
Gauss's signature
The University in Göttingen

41 Famous mathematicians of the 19th century III

A page from Gauss's scientific diary

42 Famous mathematicians of the 19th constary IV
Friedrich Wilhelm Bessel - Augustin Louis
Churchy - Jakob Steiner - Niels Henrik
Abet - Peter Gustav Lejeune Dirichlet livariste Galois - Pafnuti Lvovich Chotyahev

43 Famous mathematicians of the 19th
century V
Carl Gustav Jacob Jacobi - Bernhard
Riemann - Leopold Kronecker - Karl
Weierstraß - Arthur Cayley - Sophus Lie Somma Kowalevskay

Minthematical instruments I

Instrument for drawing an integral curve
of a given function or differential equation
Distribution to evaluate the integral of a
function whose graph is given

Minthematical instruments II
Compensating polar planimeter with polar
arm
Compensating polar planimeter with polar
carriage

Mathematical instruments III
Precision pantograph
Instrument for the measurement of rectangular coordinates or the drawing of points with given coordinates

47 Mathematical instruments IV
Harmonic analyser
Instrument to determine the tangent or
normal to a curve whose graph is given

48 Famous anothematicians of the 19th/20th century I
George Stokes - Richard Dedekind - Georg
Frobenius - Georg Cantor - Henri Poincaré - Felix Klein - Emmy Noether

49 Famous mathematicians of the 19th/20th century II

David Hilbert – Élie Joseph Cartan – Henri Léon Lebesgue – John von Neumann – Hermann Weyl – Jacques Hadamard – Stefan Banach

50 Surveying
Signals for the observation of trigonometric nets
Trigonometric point (TP)

51 Mathematical education I
Work on a wall board
Determination of an angle with a hand-made apparatus
Giant slide rule for instructional purposes

52 Mathematical education II
Computations on part of an exhaust system
Geometrical constructions on the blackboard
Application of Pythagoras' theorem

53 Mathematical education III
Models for pupils: Cube with surface and
space diagonals - Prism decomposable into
three pyramids of equal volume - Cylinder
with sections - Sphere with plane sections Sections of a right circular cone

54 Mirror images Negative and positive of a photograph Reflection in water Ship's Diesel engine in a left- and righthand version

5 Variational problems
Formation of a minimal surface in a lobster
pot
Formation of a minimal surface by a soap film

The path of the light ray is the solution of a minimal problem

56

Mathematical models
Moebius strip
A closed surface of genus 1
Pseudosphere
Surface representing the modulus of the function $w = \exp(1/z)$

Property Control of the American Control of the Con

Index of mathematicians

Abel, Niels Henrik, 1802-1829 d'Alembert, Jean le Rond, 1717-1783 Apollonius of Perga, c. 262-190 ? B. C. Archimedes, 287?-212 B. C. Argand, Jean Robert 1768-1832 Aristotle, 384-322 B. C. Banach, Stefan, 1892-1945 Beltrami, Eugenio, 1835-1900 Bernoulli, Daniel, 1700-1782 Bernoulli, Jakob, 1654-1705 Bernoulli, Johann, 1667-1748 Bessel, Friedrich Wilhelm, 1784-1846 Bezout, Étienne, 1730-1783 Bhaskara, 1114-1185? Birkhoff, George David, 1884-1944 Blaschke, Wilhelm, 1885-1962 Bólyai, Farkas, 1775-1856 Bólyai, János, 1802-1860 Bolzano, Bernard, 1781-1848 Bombelli, Rafael, 16. century Bahmagupta, born 598 Briggs, Henry, 1561-1630 Brouwer, Luitzen Egbertus Jan, 1881-1966 Buffon, Georges Louis de, 1707-1788 Bürgi, Jost, 1552-1632 Burnside, William, 1852-1927 Cantor, Georg, 1845-1918 Carathéodory, Constantin, 1873-1950 Cardano, Geronimo, 1501-1576 Cartan, Élie Joseph, 1869-1951 Cartesius † Descartes Cauchy, Augustin Louis, 1789-1857

Cavalieri, Bonaventura, c. 1598-1647 Cayley, Arthur, 1821-1895 Ceva, Giovanni, 1647-1734 Chebyshev, Pafnuti Lvovich, 1821-1894 Clavius, Christoph, 1537-1612 Cramer, Gabriel, 1704-1752 Cusanus, Nicolaus, 1401-1464 Dandelin, Pierre, 1794-1847 Dedekind, Richard, 1831-1916 de la Vallée-Poussin, Charles, 1966-1962 Descartes, René, 1596-1650 Diphantos of Alexandria, c. 250 A. D. Dirichlet, Peter Gustav Lejeune, 1805-1859 Dürer, Albrecht, 1471-1528 Eisenhart, Luther Pfahler, 1876-1965 Enriques, Federigo, 1871-1946 Eratosthenes of Kyrene, c. 276-194 B. C. Euclid of Alexandria, c. 450-380 B. C. Eudoxus, c. 408-355 B. C. Euler, Leonhard, 1707-1783 Fermat, Pierre de, 1601-1665 Ferrari, Ludovico, 1522-1565 Ferro, Scipione del, c. 1465–1526 Fibonacci † Leonardo of Pisa Fisher, Ronald Aylmer, 1890-1962 Fourier, Jean Baptiste Joseph de, 1768-1830 Fraenkel, Abraham, 1891-1965 Fredholm, Erik Ivar, 1866-1927 Frege, Gottlob, 1848-1925 Frobenius, Ferdinand Georg, 1849-1917 Galilei, Galilco, 1564-1642

Galois, Évariste, 1811-1832 Gauß, Carl Friedrich, 1777-1855 Girard, Albert, 1595-1632 Goldbach, Christian, 1690-1764 Green, George, 1793-1841 Gregory, James, 1638-1675 Guldin, Paul, 1577-1643 - Gunter, Edmund, 1561-1626 Hadamard, Jaques Salomon, 1865-1963 Hamilton, Sir William Rowan, 1805-1865 Hankel, Hermann, 1839-1874 Herbrand, Jacques, 1908-1931 Hermite, Charles, 1822-1901 Heron of Alexandria, c. 75 A. D. Hesse, Ludwig Otto, 1811-1874 Hilbert, David, 1862-1943 Hippasos of Metapontum, c. 450 B. C. Hippocrates of Chios, c. 440. B. C. l'Hospital, Guillaume François Antoine Marquis de, 1661-1704 l'Huilier, Simon, 1750-1840 Huygens, Christiaan, 1629-1695 Jacobi, Carl Gustav Jacob, 1804-1851 Jordan, Marie Ennemond Camille, 1838-1922 Kepler, Johannes, 1571-1630 Klein, Felix, 1849-1925 Kovalevski, Sonya, 1850-1891 Kronecker, Leopold, 1823-1891 Krull, Wolfgang Adolf Ludwig Helmuth, 1899-1971 Kummer, Ernst Eduard, 1810-1893 Lagrange, Joseph Louis, 1736-1813 Lambert, Johann Heinrich, 1728-1777 Laplace, Pierre Simon de, 1749-1827 Lasker, Emmanuel, 1868-1941 Lebesgue, Henri Léon, 1875-1941 Legendre, Adrien Marie, 1752-1833 Leibniz, Gottfried Wilhelm, 1646-1716 Leonardo da Vinci, 1452-1519 Leonardo of Pisa, called Fibonacci, 1180?-1250? Lie, Sophus, 1842-1899 Lindemann, Ferdinand von, 1852-1939 Liouville, Joseph, 1809-1882 Lipschitz, Rudolf, 1832-1903 Lobachevskii, Nikolai Iwanowich, 1792-1856 Lullus, Raimundus, Lull, Ramón, c. 1235-1315 Machin, John, 1685-1751 MacLaurin, Colin, 1698-1746 Maupertuis, Pierre Louis Moreau de, 1698-1759 Menelaus of Alexandria, c. 98 A. D. Minkowski, Hermann, 1864-1909 Möbius, August Ferdinand, 1790-1868 Moivre, Abraham de, 1667-1754 Monge, Gaspard, 1746-1818 Morgan, Augustus de, 1806-1871 Napier, Neper, John, 1550-1617 Neumann, John von, 1903-1957 Newton, Isaac, 1643-1727 Noether, Emmy, 1882-1935 Noether, Max, 1844-1921 Oresme, Nicole, 1323?-1382

Ostrogradskii, Michail Wassilyevich, 1801-1862 Oughtred, William, 1574-1660 Pacioli, Luca, 1445?-1514 Partridge, Seth, 1603-1686 Pappus of Alexandria, 4, century Pascal, Blaise, 1623-1662 Peano, Giuseppe, 1858-1932 Pearson, Karl, 1857-1936 Pell, John, 1610-1685 Plato, 427-347? B. C. Plücker, Julius, 1801-1868 Poincaré, Henri, 1854-1912 Poisson, Siméon Denis, 1781-1840 Poncelet, Jean Victor, 1788-1867 Poseidonius, c. 135-51 B. C. Proclus, c. 410-485 Pythagoras of Samos, c. 580-496 B. C. Quetelet, Lambert Adolphe Jacques, 1796-1874 Recorde, Robert, 1510?-1558 Regiomontanus, Johannes, 1436-1476 Riemann, Bernhard, 1826-1866 Ries, Adam, 1492-1559 Rolle, Michel, 1652-1719 Rudolff, Christoph, c. 1500-1545 Ruffini, Paolo, 1765-1822 Russell, Bertrand, 1872-1970 Rytz, David, 1801-1868 Saccheri, Girolamo, 1667-1733 Schmidt, Erhard, 1876-1959 Schwarz, Hermann Amandus, 1843-1921 Segre, Corrado, 1863-1924 Severi, Francesco, 1879-1961 Simpson, Thomas, 1710-1761 Staudt, Carl Georg Christian von, 1798-1867 Steiner, Jakob, 1796-1863 Stevin, Simon, 1548-1620 Stifel, Michael, 1487-1567 Stirling, James, 1696-1770 Stokes, George Gabriel, 1819-1903 Tartaglia, Niccolò, originally Fontana Niccolò, c. 1500-1557 Taylor, Brook, 1685-1731 Thales of Miletus, c. 624-547 B. C. Theaitetus, 410?-368 B. C. Theodoros von Cyrene, c. 390 B. C. Tschirnhaus, Ehrenfried Walter Graf von, 1651-1708 Vieta † Viète Viète, François, 1540-1603 Vlacq, Adrien, c. 1600-1667 Wallis, John, 1616-1703 Waring, Edward, 1734-1798 Weierstraß, Karl, 1815-1897 Wessel, Caspar, 1745-1818 Weyl, Hermann, 1885-1955 Whitehead, Alfred North, 1861-1947 Widmann, Johann, born 1460 Wingate, Edmund, 1593-1656 Wittich, Paul, 1555-1587 Wronski, Josef Maria, 1775-1853 Zenodoros, c. 180 B. C Zenon of Elea, 490-430 B. C. Zermelo, Ernst; 1871-1953

Introduction

The great achievements of technology in all its forms, which deeply influence the life of every human being, have led to a widespread recognition of the importance of mathematics: everybody knows, or at least believes, that without mathematics these achievements in their entirety could not have come about. Interest in mathematics has therefore grown steadily, and with it the need for information about this science.

Now in many respects mathematics is an exceptional science, in particular, as regards the presentation of its problems and results. While in medicine, zoology, botany, geography and geology, or in languages, history, astronomy, a scholar, fully equipped with the knowledge of his time, can explain to a layman the majority of his problems and results, perhaps even his methods or the fundamental principles of his special interests, in such a way that he succeeds in conveying an impression of the contents of this field, in present-day chemistry and physics this is far more difficult – and in mathematics well-nigh impossible. Not only has the volume of results grown phenomenally, but the problems are so difficult to treat and lie so deep that even mathematicians can have

no more than a superficial view of the whole of mathematics.

One tries to counteract the fragmentation of mathematics into many special branches by extracting as far as possible from various domains common features, which sometimes do not lie at all close to the surface, and by creating from them a new and even more abstract theory: in just this way new links are forged between at first sight widely diverging directions. This process can be regarded as a repeated abstraction: whereas the basic disciplines such as algebra and geometry have their origin in abstractions from everyday experience, one arrives at such a unifying theory by further abstractions, for example, from algebra and geometry: and under certain circumstances such abstracting processes can be repeatedly piled on top of one another. Here 'abstract' has to be understood in the literal meaning of the word as 'removing', as leaving aside everything inessential for the context in question or for a particular purpose; for example, ignoring colour in geometric figures, which may very well play a role in ornaments.

From all this it follows that it is quite impossible to give a layman even a glimpse of the whole of contemporary mathematics. Here a layman is not only one whose knowledge is limited to the normal contents of a school syllabus. Even a mathematician with a diploma or a B. Sc., even a teacher of mathematics, has to be regarded as a layman in many special branches. It is simply impossible to acquire specialized knowledge of all branches of mathematics in three or four years of study. Therefore this book cannot have the ambition of imparting knowledge in all special fields

of mathematics - restriction is essential.

In its historical development mathematics first proceeded in quite a naive manner. It started out from the numbers 1, 2, 3, ... and from the intuitively obvious figures of geometry such as points, segments, lines, planes in space, angles, triangles, circles, etc.; gradually it ascended to more complex formations, with the realm of numbers and that of figures not developing as separate entities, but connected through the notion of measuring. It was in this development, progressing from the intuitively simple and obvious to more complicated problems, that mathematics was built up, for example, in Babylonia and Egypt; astonishing achievements were reached in astronomy, such as the prediction of lunar eclipses. But it was the Greeks who lifted mathematics to a completely new level of development when they felt compelled not always to forge ahead, but also to reflect: what is it that one does in pursuing mathematics? The result was that through them mathematics became a sience in the present-day sense. On the one hand, they recognized that a proof consists in reducing a mathematical proposition to other known facts by the simplest logical conclusions, supported and made convincing sufficiently often by evidence or experience. On the other hand, they realized that such a reduction process cannot go on indefinitely but only as far as certain simplest properties of numbers or figures, which appear secure by virtue of intuition or experience.

In this way they compiled for the first time consciously a system of fundamental facts, for example, that there is precisely one straight line passing through two points, and they created the foundation of logic. Together these two features lead to a systematic build-up of geometry, rising from the simple

to the complex.

For a long time this Euclidean geometry, apart from a few minor supplements, remained the model of a science. However, no comparable attempt was made for about two thousand years to