BBBBBBB I\

%/ﬁ Cli%u-;"': 7

% 1~43053)
ER AR, éﬁ?E- 1, AFRER

(SRR - SE3hR)

Algorithms
N

Parts 1-4

FUNDAMENTALS
DATA STRUCTURES
SORTING
SEARCHING

Robert Sedgewic "
E R ETm K F

(%)
L O

China Machine Press

FRER

(F1~45853)
1, H

R, RS
(R

=Ygl

SR3hR)

English reprint edition copyright © 2006 by Pearson Education Asia Limited and
China Machine Press.

Original English language title: Algorithms in C, Parts 1-4: Fundamentals, Data
Structures, Sorting, Searching, Third Edition (ISBN 0-201-31452-5) by Robert Sedgewick,
Copyright © 1998 by Addison-Wesley Publishing Company, Inc,

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc.,
publishing as Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except
Taiwan, Hong Kong SAR and Macau SAR).

A H X ENR B Pearson Education Asia Ltd 3&4HLHE Tk HiRHHREHIR.
SUREPHEF, ARUMEMTRAERHSDEEBHNE.

SR T ARKMESEN (FREPEES. RITENITEREMTEEGERX)
HERT.

A A5 H A Pearson Education (FAKEHRER) BOLHHIRE, LIREH
.

BEATE, #ReR.
FPEEME ERTRABTESH

FHBRINEIZS: BF: 01-2006-3992
BHERSBE (CIP) HiE

By CIEEEE (81 -4iBsr): Eianf. sy, dhFrrig® (B3R - $3
fR) /(%) AR (Sedgewick,R.) #. —Jbi: LRIV HIRRYE, 2006.9

(BBFRAE)

4L Algorithms in C, Parts 1-4: Fundamentals, Data Structures, Sorting,
Searching, Third Edition

ISBN 7-111-19764-X

LG 0% WO AFHEH-BRER-%£X © CEF-BFRH-%
3 IV.® TP30l.6 @ TP312

o E R A B SECIPE T F (2006) 20965955

HUBR Tolk AR ClescdsmIz 67 FERH22°S BEE4ES 100037)
LS BRiREE

AL EEENRIE PR 2 RIENR] - FifeBEIL R RITEIT
2006459 A4 1 RS 1 dRENRI

170mm x 242mm - 45.25E3k

ZEHr: 69.005¢

WA+, mAETE. BT, 8T, HAHZTHRR
FHGHHE: (010) 68326294

Preface

HIS BOOK IS intended to survey the most important computer

algorithms in use today, and to teach fundamental techniques to
the growing number of people in need of knowing them. It can be
used as a textbook for a second, third, or fourth course in computer
science, after students have acquired basic programming skills and fa-
miliarity with computer systems, but before they have taken specialized
courses in advanced areas of computer science or computer applica-
tions. The book also may be useful for self-study or as a reference for
people engaged in the development of computer systems or applica-
tions programs, since it contains implementations of useful algorithms
and detailed information on these algorithms’ performance character-
istics. The broad perspective taken makes the book an appropriate
introduction to the field.

[have completely rewritten the text for this new edition, and
have added more than a thousand new exercises, more than a hundred
new figures, and dozens of new programs. I have also added detailed
commentary on all the figures and programs. This new material pro-
vides both coverage of new topics and fuller explanations of many of
the classic algorithms. A new emphasis on abstract data types through-
out the book makes the programs more broadly useful and relevant in
modern object-oriented programming environments. People who have
read old editions of the book will find a wealth of new information
throughout; all readers will find a wealth of pedagogical material that
provides effective access to essential concepts.

Due to the large amount of new material, we have split the new
edition into two volumes (each about the size of the old edition) of
which this is the first. This volume covers fundamental concepts, data
structures, sorting algorithms, and searching algorithms; the second
volume covers advanced algorithms and applications, building on the
basic abstractions and methods developed here. Nearly all the material
on fundamentals and data structures in this edition is new.

viii

PREFACE

This book is not just for programmers and computer-science stu-
dents. Nearly everyone who uses a computer wants it to run faster
or to solve larger problems. The algorithms in this book represent
a body of knowledge developed over the last 50 years that has be-
come indispensible in the efficient use of the computer, for a broad
variety of applications. From N-body simulation problems in physics
to genetic-sequencing problems in molecular biology, the basic meth-
ods described here have become essential in scientific research; and
from database systems to Internet search engines, they have become
essential parts of modern software systems. As the scope of computer
applications becomes more widespread, so grows the impact of many
of the basic methods covered here. The goal of this book is to serve
as a resource for students and professionals interested in knowing and
making intelligent use of these fundamental algorithms as basic tools
for whatever computer application they might undertake.

Scope

The book contains 16 chapters grouped into four major parts: funda-
mentals, data structures, sorting, and searching. The descriptions here
are intended to give readers an understanding of the basic properties
of as broad a range of fundamental algorithms as possible. Ingenious
methods ranging from binomial queues to patricia tries are described,
all related to basic paradigms at the heart of computer science. The
second volume consists of four additional parts that cover strings, ge-
ometry, graphs, and advanced topics. My primary goal in developing
these books has been to bring together the fundamental methods from
these diverse areas, to provide access to the best methods known for
solving problems by computer.

You will most appreciate the material in this book if you have had
one or two previous courses in computer science or have had equivalent
programming experience: one course in programming in a high-level
language such as C, Java, or C++, and perhaps another course that
teaches fundamental concepts of programming systems. This book
is thus intended for anyone conversant with a modern programming
language and with the basic features of modern computer systems.
References that might help to fill in gaps in your background are
suggested in the text.

Most of the mathematical material supporting the analytic results
is self-contained (or is labeled as beyond the scope of this book), so
little specific preparation in mathematics is requited for the bulk of the
book, although mathematical maturity is definitely helpful.

Use in the Curriculum

There is a great deal of flexibility in how the material here can be
taught, depending on the taste of the instructor and the preparation
of the students. The algorithms described here have found widespread
use for years, and represent an essential body of knowledge for both
the practicing programmer and the computer-science student. There
is sufficient coverage of basic material for the book to be used for a
course on data structures, and there is sufficient detail and coverage of
advanced material for the book to be used for a course on algorithms.
Some instructors may wish to emphasize implementations and prac-
tical concerns; others may wish to emphasize analysis and theoretical
concepts.

A complete set of slide masters for use in lectures, sample pro-
gramming assignments, interactive exercises for students, and other
course materials may be found via the book’s home page.

An elementary course on data structures and algorithms might
emphasize the basic data structures in Part 2 and their use in the
implementations in Parts 3 and 4. A course on design and analysis of
algorithms might emphasize the fundamental material in Part 1 and
Chapter $, then study the ways in which the algorithms in Parts 3
and 4 achieve good asymptotic performance. A course on software
engineering might omit the mathematical and advanced algorithmic
material, and emphasize how to integrate the implementations given
here into large programs or systems. A course on algorithms might
take a survey approach and introduce concepts from all these areas.

Earlier editions of this book have been used in recent years at
scores of colleges and universities around the world as a text for the
second or third course in computer science and as supplemental reading
for other courses. At Princeton, our experience has been that the
breadth of coverage of material in this book provides our majors with
an introduction to computer science that can be expanded upon in
later courses on analysis of algorithms, systems programming and

X

PREFACE

theoretical computer science, while providing the growing group of
students from other disciplines with a large set of techniques that these
people can immediately put to good use.

The exercises—most of which are new to this edition—fall into
several types. Some are intended to test understanding of material
in the text, and simply ask readers to work through an example or
to apply concepts described in the text. Others involve implementing
and putting together the algorithms, or running empirical studies to
compare variants of the algorithms and to learn their properties. Still
others are a repository for important information at a level of detail
that is not appropriate for the text. Reading and thinking about the
exercises will pay dividends for every reader.

Algorithms of Practical Use

Anyone wanting to use a computer more effectively can use this book
for reference or for self-study. People with programming experience
can find information on specific topics throughout the book. To a large
extent, you can read the individual chapters in the book independently
of the others, although, in some cases, algorithms in one chapter make
use of methods from a previous chapter.

The orientation of the book is to study algorithms likely to be of
practical use. The book provides information about the tools of the
trade to the point that readers can confidently implement, debug, and
put to work algorithms to solve a problem or to provide functionality
in an application. Full implementations of the methods discussed are
included, as are descriptions of the operations of these programs on
a consistent set of examples. Because we work with real code, rather
than write pseudo-code, the programs can be put to practical use
quickly. Program listings are available from the book’s home page.

Indeed, one practical application of the algorithms has been to
produce the hundreds of figures throughout the book. Many algo-
rithms are brought to light on an intuitive level through the visual
dimension provided by these figures.

Characteristics of the algorithms and of the situations in which
they might be useful are discussed in detail. Although not emphasized,
connections to the analysis of algorithms and theoretical computer
science are developed in context. When appropriate, empirical and

analytic results are presented to illustrate why certain algorithms are
preferred. When interesting, the relationship of the practical algo-
rithms being discussed to purely theoretical results is described. Spe-
cific information on performance characteristics of algorithms and im-

plementations is synthesized, encapsulated, and discussed throughout
the book.

Programming Language

The programming language used for all of the implementations is C.
Any particular language has advantages and disadvantages; we use
C because it is widely available and provides the features needed for
our implementations. The programs can be translated easily to other
modern programming languages, since relatively few constructs are
unique to C. We use standard C idioms when appropriate, but this
book is not intended to be a reference work on C programming.

There are many new programs in this edition, and many of the
old ones have been reworked, primarily to make them more readily
useful as abstract-data-type implementations. Extensive comparative
empirical tests on the programs are discussed throughout the text.

Previous editions of the book have presented basic programs in
Pascal, C++, and Modula-3. This code is available through the book
home page on the web; code for new programs and code in new
languages such as Java will be added as appropriate.

A goal of this book is to present the algorithms in as simple and
direct a form as possible. The style is consistent whenever possible, so
that programs that are similar look similar. For many of the algorithms
in this book, the similarities hold regardless of the language: Quicksort
is quicksort (to pick one prominent example), whether expressed in
Algol-60, Basic, Fortran, Smalltalk, Ada, Pascal, C, PostScript, Java,
or countless other programming languages and environments where it
has proved to be an effective sorting method. .

We strive for elegant, compact, and portable implementations,
but we take the point of view that efficiency matters, so we try to
be aware of the performance characteristics of our code at all stages
of development. Chapter 1 constitutes a detailed example of this
approach to developing efficient C implementations of our algorithms,
and sets the stage for the rest of the book.

xi

xii

PREFACE
Acknowledgments

Many people gave me helpful feedback on earlier versions of this book.
In particular, hundreds of students at Princeton and Brown have suf-
fered through preliminary drafts over the years. Special thanks are due
to Trina Avery and Tom Freeman for their help in producing the first
edition; to Janet Incerpi for her creativity and ingenuity in persuading
our early and primitive digital computerized typesetting hardware and
software to produce the first edition; to Marc Brown for his part in
the algorithm visualization research that was the genesis of so many of
the figures in the book; and to Dave Hanson for his willingness to an-
swer all of my questions about C. I would also like to thank the many
readers who have provided me with detailed comments about various
editions, including Guy Almes, Jon Bentley, Marc Brown, Jay Gischer,
Allan Heydon, Kennedy Lemke, Udi Manber, Dana Richards, John
Reif, M. Rosenfeld, Stephen Seidman, Michael Quinn, and William
Ward.

To produce this new edition, I have had the pleasure of working
with Peter Gordon and Debbie Lafferty at Addison-Wesley, who have
patiently shepherded this project as it has evolved from a standard
update to a massive rewrite. It has also been my pleasure to work with
several other members of the professional staff at Addison-Wesley. The
nature of this project made the book a somewhat unusual challenge
for many of them, and I much appreciate their forbearance.

I have gained two new mentors in writing this book, and partic-
ularly want to express my appreciation to them. First, Steve Summit
carefully checked early versions of the manuscript on a technical level,
and provided me with literally thousands of detailed comments, partic-
ularly on the programs. Steve clearly understood my goal of providing
elegant, efficient, and effective implementations, and his comments not
only helped me to provide a measure of consistency across the imple-
mentations, but also helped me to improve many of them substantially.
Second, Lyn Dupre also provided me with thousands of detailed com-
ments on the manuscript, which were invaluable in helping me not only
to correct and avoid grammatical errors, but also—more important—
to find a consistent and coherent writing style that helps bind together
the daunting mass of technical material here. I am extremely grateful

for the opportunity to learn from Steve and Lyn—their input was vital
in the development of this book.

Much of what I have written here have learned from the teaching
and writings of Don Knuth, my advisor at Stanford. Although Don had
no direct influence on this work, his presence may be felt in the book,
for it was he who put the study of algorithms on the scientific footing
that makes a work such as this possible. My friend and colleague
Philippe Flajolet, who has been a major force in the development of
the analysis of algorithms as a mature research area, has had a similar
influence on this work.

[am deeply thankful for the support of Princeton University,
Brown University, and the Institut National de Recherce en Informa-
tique et Automatique (INRIA), where I did most of the work on the
book; and of the Institute for Defense Analyses and the Xerox Palo
Alto Research Center, where I did some work on the book while visit-
ing. Many parts of the book are dependent on research that has been
generously supported by the National Science Foundation and the Of-
fice of Naval Research. Finally, I thank Bill Bowen, Aaron Lemonick,
and Neil Rudenstine for their support in building an academic envi-
ronment at Princeton in which I was able to prepare this book, despite
my numerous other responsibilities.

Robert Sedgewick

Marly-le-Roi, France, February, 1983
Princeton, New Jersey, January, 1990
Jamestown, Rhode Island, August, 1997

xiii

Notes on Exercises

Classifying exercises is an activity fraught with peril, because readers
of a book such as this come to the material with various levels of
knowledge and experience. Nonetheless, guidance is appropriate, so
many of the exercises carry one of four annotations, to help you decide
how to approach them.

Exercises that test your understanding of the material are marked
with an open triangle, as follows:

>9.§7 Give the binomial queue that results when the keys EASY
QUESTION are inserted into an initially empty binomial queue.
Most often, such exercises relate directly to examples in the text. They
should present no special difficulty, but working them might teach you
a fact or concept that may have eluded you when you read the text.
Exercises that add new and thought-provoking information to the
materidl are marked with an open circle, as follows:

014.20 Write a program that inserts N random integers into a
table of size N/100 using separate chaining, then finds the length
of the shortest and longest lists, for N = 10°, 10%, 10%; and 10°.

Such exercises encourage you to think about an important concept
that is related to the material in the text, or to answer a question that
may have occurred to you when you read the text. You may find it
worthwhile to read these exercises, even if you do not have the time to
work them through.

Exercises that are intended to challenge you are marked with a black
dot, as follows:

08,46 Suppose that mergesort is implemented to split the file at
a random position, rather than exactly in the middle. How many
comparisons are used by such a method to sort N elements, on
the average?

Such exercises may require a substantial amount of time to complete,
depending upon your experience. Generally, the most productive ap-
proach is to work on them in a few different sittings.

A few exercises that are extremely difficult (by comparison with
most others) are marked with two black dots, as follows:

0 15.29 Prove that the height of a trie built from N random bit-
strings is about 2Ig N,

xvi

These exercises are similar to questions that might be addressed in the
research literature, but the material in the book may prepare you to
enjoy trying to solve them (and perhaps succeeding).

The annotations are intended to be neutral with respect to your
programming and mathematical ability. Those exercises that require
expertise in programming or in mathematical analysis are self-evident.
All readers are encouraged to test their understanding of the algorithms
by implementing them. Still, an exercise such as this one is straight-
forward for a practicing programmer or a student in a programming
course, but may require substantial work for someone who has not
recently programmed:

1.23 Modify Program 1.4 to generate random pairs of integers

between 0 and N -1 instead of reading them from standard input,

and to loop until N — 1 union operations have been performed.

Run your program for N = 10°, 10%, 10°, and 10°and print out

the total number of edges generated for each value of N.
In a similar vein, all readers are encouraged to strive to appreciate
the analytic underpinnings of our knowledge about properties of al-
gorithms. Still, an exercise such as this one is straightforward for a
scientist or a student in a discrete mathematics course, but may require
substantial work for someone who has not recently done mathematical
analysis:

1.13 Compute the average distance from a node to the root in
a worst-case tree of 2" nodes built by the weighted quick-union
algorithm,

There are far too many exercises for you to read and assimilate
them all; my hope is that there are enough exercises here to stimulate
you to strive to come to a broader understanding on the topics that
interest you than you can glean by simply reading the text.

Contents

Fundamentals

Chapter 1. Introduction

1.1 Algorithms - 4

1.2 A Sample Problem—Connectivity - 6
1.3 Union-Find Algorithms - 11

1.4 Perspective - 22

1.5 Summary of Topics - 23

Chapter 2. Principles of Algorithm Analysis

2.1 Implementation and Empirical Analysis - 28
2.2 Analysis of Algorithms - 33

2.3 Growth of Functions - 36

2.4 Big-Oh notation - 44

2.5 Basic Recurrences - 49

2.6 Examples of Algorithm Analysis - 53

2.7 Guarantees, Predictions, and Limitations - 59

27

xviii TABLE OF CONTENTS

Data Structures

Chapter 3. Elementary Data Structures 69

3.1 Building Blocks - 70

3.2 Arrays - 82

3.3 Linked Lists - 90

3.4 Elementary List Processing - 96
3.5 Memory Allocation for Lists - 105
3.6 Strings - 109

3.7 Compound Data Structures - 115

Chapter 4. Abstract Data Types 127

4.1 Abstract Objects and Collections of Objects - 131
4.2 Pushdown Stack ADT - 135

4.3 Examples of Stack ADT Clients - 138

4.4 Stack ADT Implementations - 144

4.5 Creation of a New ADT - 149

4.6 FIFO Queues and Generalized Queues - 153

4.7 Duplicate and Index Items - 161

4.8 First-Class ADTs - 165

4.9 Application-Based ADT Example - 178

4.10 Perspective - 184

Chapter 5. Recursion and Trees 187

5.1 Recursive Algorithms - 188

5.2 Divide and Conquer - 196

5.3 Dynamic Programming - 208

5.4 Trees - 216

5.5 Mathematical Properties of Trees - 226
5.6 Tree Traversal - 230

5.7 Recursive Binary-Tree Algorithms - 235
5.8 Graph Traversal - 241

5.9 Perspective - 247

Xix

Sorting

Chapter 6. Elementary Sorting Methods 253

6.1 Rules of the Game - 25§

6.2 Selection Sort - 261

6.3 Insertion Sort - 262

6.4 Bubble Sort - 265

6.5 Performance Characteristics of Elementary Sorts - 267
6.6 Shellsort - 273

6.7 Sorting Other Types of Data - 281

6.8 Index and Pointer Sorting - 287

6.9 Sorting of Linked Lists - 294

6.10 Key-Indexed Counting - 298

Chapter 7. Quicksort 303

7.1 The Basic Algorithm - 304

7.2 Performance Charactetistics of Quicksort - 309
7.3 Stack Size - 313

7.4 Small Subfiles - 316

7.5 Median-of-Three Partitioning - 319

7.6 Duplicate Keys - 324

7.7 Strings and Vectors - 327

7.8 Selection - 329

Chapter 8. Merging and Mergesort 335

8.1 Two-Way Merging - 336

8.2 Abstract In-place Merge - 339

8.3 Top-Down Mergesort - 341

8.4 Improvements to the Basic Algorithm - 344

8.5 Bottom-Up Mergesort - 347

8.6 Performance Characteristics of Mergesort - 351
8.7 Linked-List Implementations of Mergesort - 354
8.8 Recursion Revisited - 357

Chapter 9. Priority Queues and Heapsort 361

9.1 Elementary Implementations - 365
9.2 Heap Data Structure - 368

XX

TABLE OF CONTENTS

9.3 Algorithms on Heaps - 371

9.4 Heapsort - 376

9.5 Priority-Queue ADT - 383

9.6 Priority Queues for Index Items - 389
9.7 Binomial Queues - 392

Chapter 10. Radix Sorting 403

10.1 Bits, Bytes, and Words - 405

10.2 Binary Quicksort - 409

10.3 MSD Radix Sort - 413

10.4 Three-Way Radix Quicksort - 421

10.5 LSD Radix Sort - 425

10.6 Performance Characteristics of Radix Sorts - 428
10.7 Sublinear-Time Sorts - 433

Chapter 11. Special-Purpose Sorts 439

11.1 Batcher’s Odd-Even Mergesort - 441
11.2 Sorting Networks - 446
11.3 External Sorting - 454

11.4 Sort-Merge Implementations - 460
11.5 Parallel Sort/Merge - 466

Searching

Chapter 12. Symbol Tables and BSTs 477

12.1 Symbol-Table Abstract Data Type - 479

12.2 Key-Indexed Search - 485

12.3 Sequential Search - 489

12.4 Binary Search - 497

12.5 Binary Search Trees (BSTs) - 502

12.6 Performance Characteristics of BSTs - 508

12.7 Index Implementations with Symbol Tables - 511
12.8 Insertion at the Root in BSTs - 516

12.9 BST Implementations of Other ADT Functions - 519

Chapter 13. Balanced Trees

13.1 Randomized BSTs - 533

13.2 Splay BSTs - 540

13.3 Top-Down 2-3-4 Trees - 546
13.4 Red-Black Trees - 551

13.5 Skip Lists - 561

13.6 Performance Characteristics - 569

Chapter 14. Hashing

14.1 Hash Functions - 574

14.2 Separate Chaining - 583
14.3 Linear Probing - 588

14.4 Double Hashing - 594

14.5 Dynamic Hash Tables - 599
14.6 Perspective - 603

Chapter 15. Radix Search

15.1 Digital Search Trees - 610

15.2 Tries - 614

15.3 Patricia Tries - 623

15.4 Multiway Tries and TSTs - 632
15.5 Text String Index Algorithms - 648

Chapter 16. External Searching

16.1 Rules of the Game - 657

16.2 Indexed Sequential Access - 660
16.3 B Trees - 662

16.4 Extendible Hashing - 676

16.5 Perspective - 688

Index

529

573

609

655

693

XXi

