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PREFACE

Never in the history of science has there been a theory which has had such
a_profound impact on human thinking as quantum mechanics; nor has
there been a theory which scored such spectacular successes in the predic-
tion of such an enormous variety of phenomena (atomic physics, solid
state physics, chemistry, etc.). Furthermore, for all that is known today,
quantum mechanics is the only consistent theory of elementary processes.

Thus although quantum mechanics calls for a drastic revision of the very
foundations of traditional physics and epistemology, its mathematical
apparatus or, more generally, its abstract formalism seems to be firmly
established. In fact, no other formalism of a radically different structure
has ever been generally accepted as an alternative. The interpretation of
this formalism, however, is today, almost half a century after the advent ®f
the theory, still an issue of unprecedented dissension. In fact, it is by far
the most controversial problem of current research in the foundations of
physics and divides the community of physicists and philosophers of
science into numerous opposing “schools of thought.” :

In spite of its importance for physics and philosophy alike, the in-
terpretative’ problem of quantum mechanics has rarely, if ever, been
studied sine ira et studio from a general historical point of view. The
numerous essays and monographs published on this subject are usually
confined to specific aspects in defense of a particular view. No compre-
hensive scholarly analysis of the problem in its generality and historical
perspective has heretofore appeared. The present historico-critical study is
designed to fill this lacuna.

The book is intended to serve two additional purposes.

Since the book is not merely a chronological catalogue of the various
interpretations of quantum mechanics but is concerned primarily with the
.- analysis of their conceptual backgrounds, philosophical implications, and
“interrelations, it mAy also serve as a general introduction to the study of
the logical foundations and philosophy of quantum mechanics. Although
indispensable for a deeper understanding of modern theoretical physics,
this subject is seldom given sufficient consideration in the usual textbooks

and lecture courses on the theory. The historical approach, moreover, has
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the didactical advantage of facilitating such a study for the uninitiated
reader. : . ; .
Finally, because of its detailed documentation the book may also be
" used as a guide to the literature of the subject. Great care has been taken
to provide accurate and up-to-date references to the international literature
on the topics discussed. The reader should find it easy to pursue any
specific detail in which he happens to be interested. To make the book
self-contained and understandable not only to the specialist but also to the
general reader familiar with the rudiments of quantum physics, proofs of
all the theorems which are of decisive importance for the interpretative
problem are given either in detail or in outline. In addition, much of the
' ;nateri\al which is required to understand the text but is usually not
fcluded in courses on quantum mechanics is. explained either in full or at
least to such an extent that no difficulties should arise in following the
arguments. In particular, for the convenience of the reader the essentials of
lattice theory, a subject seldom studied by physicists but indispensable for
a comprehension of quantum logic and related topics, are summarized in
an appendix at the end of the book. Concise as it is, this summary contains
all prerequisites to prove the theorems referred to in the text.

If the reader is interested only in the philosophical aspects of the subject,
he may well omit some of the more technical and mathematical sections of
the text and yet be able to follow the main argument without serious loss
of continuity. . ; _

The notation, made uniform as much as possible, is always explained in
~ the text. To keep the book to manageable length, repetitions of footnotes
" are avoilded. To this end, an abbreviation like footnote 2 in Chapter 3,
“Ref. 2-1 (1969, p. 105; 1971, p. 73),” is meant to refer to page 105 of the
1969 publication and to page 73 of the 1971 publication mentioned in
foatnote 1. of Chapter 2. In references to the same chapter the chapter
~ number is omitted. A similar notation is adopted for references to

mathematical equations. :
The book has its origin in lecture notes for a graduate course on the
history and philosophy of modern physics which I gave in 1968 at
Columbia University (New York). The first four chapters of the book were
written during my visits to the Minnesota Center for Philosophy of Science
(Minneapolis), the Max-Planck-Institute (Munich and Starnberg), and the
" Niels Bohr Institute (Copenhagen). Chapter 5 is based on a paper which I |
read in 1971 at Lomonosov State University (Moscow) on the occasion of
the XIIth International Congress of the History of Science. The sub-
sequent two chapters are expanded versions of talks which 1 gave in 1972
and 1973 at the International School of Physics “Enrico Fermi” at
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Varenna (Italy), at the University of Florence,-and at the Universities of
Amsterdam. Chaptér 8 was written during my visit to the Universities of
Berlin, Gottingen, Hamburg, and Marburg. The last three chapters were
completed at Simon Fraser University (British Columbia, Canada), the
University of Alberta (Edmonton, Canada), and Reed College (Portland,
Oregon) where I served in 1973 as Andrew Mellon Distinguished Visiting
Professor. ) ‘
These lecture engagements enabled me to consult many libraries and
archives and, more important, to establish personal contact with the
leading quantum theorists of our time. Disregarding what the pragmatic

"humanist F. C. S. Schiller once called “the curious etiquette which

apparently taboos the asking of questions about a philosopher’s meaning
while he is alive,” I unscrupulously interrogated many prominent authori-
ties about numerous details of their work in the foundations of quantum
mechanics. Their readiness and frankness in answering my questions
enabled me to obtain much of the information first hand, an opportunity
invaluable for one who works in the current history of physics.

I thus owe a great debt of gratitude. Most influential on my view of the
role of philosophy in physics were the discussions with, and writings of,
Professors Herbert Feigl, Paul K. Feyerabend, Henry Margenau, Ernest
Nagel, and Wolfgang Stegmiiller. As to physics proper, I wish to express
my gratitude to Professors Louis de Broglie, Paul A. M. Dirac, Tsung-Dao
Lee, and Eugene P. Wigner for having read parts of the manuscript or
having given me the privilege of discussing with them numerous subjects
dealt with in the book. I would also like to acknowledge my indebtedness
to Professors Leslie E. Ballentine and David Bohm for having read
substantial parts of the typescript, and to Professors Friedrich Bopp,
Jeffrey Bub, Richard Friedberg, Kurt Hiibner, Friedrich Hund, Josef M.
Jauch, Pascual Jordan, Gerhart Liiders, Peter Mittelstaedt, Wilhelm Ochs,
Rudolf Peierls, Constantin Piron, Mauritius Renninger, Nathan Rosen,
Léon Rosenfeld, Mendel Sachs, Erhard Scheibe, Abner Shimony, Georg
Siissmann, and Carl Friedrich von Weizsdcker for their patience in discuss-
ing with me in stimulating conversations many aspects of their work. I am
also grateful to Professors Asséne B. Datzeff, John Stewart Bell, Dimitrii L.
Blokhintsev, Wolfgang Biichel, Hilbrand J. Groenewold, Grete Henry-
Hermann, Banesh Hoffmann, Edwin C. Kemble, Alfred Landé, Sir Karl
R. Popper, and Martin Strauss as well as to Dr. Hugh Everett 111, Mrs.
Edith London, and Mrs. (Polly) Boris Podolsky for their cooperation in
providing epistolary information. Finally, 1 wish to thank my colleagues
Professors Marshall Luban and Paul Gluck for their critical reading of the
typescript of the book.
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Needless to say, the responsibility for any errors or misinterpretations

- rests entirely upon me.

Bar-llan University
Ramat-Gan, Israel

and .

City University of New York

September 1974

MAX JAMMER
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2 Formalism and Interpretations
1.1. THE FORMALISM

The purpose of the first part of this introductory chapter is to present a
brief outline of the mathematical formalism of nonrelativistic quantum
mechanics of systems with a finite number of degrees of freedom. This
formalism, as we have shown elsewhere,! was the outcome of a compli-
cated conceptual process of trial and error and it is hardly an overstate-
ment to say that it'preceded’its own interpretation, a development almost
unique in the history of physical science. Although the reader is assumed
to be acquainted with this formalism, its essential features will be reviewed,
without regard to mathematical subtleties, to introduce the substance and
terminology needed for discussion of the various interpretations.

Like other physical theories, quantum mechanics can be formalized in
terms of several axiomatic formulations. The historically most influential
and hence for the history of the interpretations most important formalism
was proposed in the late 1920s by John von Neumann and expounded in
his classic treatise on the mathematical foundations of quantum
mechanics.?

In recent years a number of excellent texts® have been published which
discuss and elaborate von Neumann’s formalism and to which the reader is
referred for further details.

Von Neumann’s idea to formulate quantum mechanics as an operator
calculus in Hilbert space was: undoubtedly one of the great innovations in
modern mathematical physics.*

'M. Jammer, The Conceptual Development of Quantum Mechanics (McGraw-Hill, New York,
1966, 1968, 1973): Rydshi Riki-gaku Shi (Tokyo Tosho, Tokyo, 1974).

2J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932,
1969; Dover, New York, 1943); Les Fondements Mathématiques de la Mécanique Quantique
(Alcan, Paris, 1946); Fundamentos Matematicos de la Mecanica Cudntica (Instituto Jorge Juan,
Madrid, 1949); Mathematical Foundatiofs of Quantum Mechanics (Princeton University Press,
Princeton, N.J., 1955); Matematiteskije Osnovi Koantovgj Mekhaniki (Nauka, Moscow, 1964).
3G. Fano, Metodi Matematici della Meccanica Quantistica (Zanichelli, Bologna, 1967);
Mathematical Methods of Quantum Mechanics (McGraw-Hill, New York, 1971). B. Sz.-Nagy,
Spektraldarstellung finearer Transformationen des Hilbertschen Raumes (Springer, Berlin, Hei-
delberg, New York, 1967); J. M. Jauch, Foundations of Quantum Mechanics (Addison-Wesley,
Reading, Mass., 1968); B. A. Lengyel, “Functional analysis for quantum theorists,” Advances
in Quantum Chemistry 1968, 1-82; J. L. Soulé, Linear Operators in Hilbert Space (Gordon and
Breach, New York, 1968); T. F. Jordan, Linear Operators for Quantum Mechanics (Wiley,
New York, 1969); E. Prugovecki, Quantum Mechanics in Hilbert Space (Academic Press, New
York, London, 1971). '

“For the history of the mathematical background of this discovery see Ref. 1 and M.
Bernkopf, “The development of function spaces with particular reference to their origins in
integral equation theory,” Archive for History of Exact Sciences 3, 1-96 (1966); “A history of
infinite matrices,” ibid., 4, 308-358 (1968); E. E. Kramer, The Nature and Growth of Modern



The Formalism 3

A Hilbert space I, as abstractly defined by von Neumann, is a linear
strictly positive inner product space (generally over the field & of complex
numbers) which is complete with respect to the metric generated by the
inner product and which is separable. Its elements are called vectors,
usually denoted by ¥, ,..., and their inner or scalar product is denoted by
(@, %), whereas the elements of F are called scalars and usually denoted by
a,b,.... In his work on linear integral equations (1904-1910) David Hilbert
had studied two realizations of such a space, the Lebesgue space £2 of
(classes of) all complex-valued Lebesgue measurable square-integrable
functions on an interval of the real line R (or R itself), and the space 2 of
sequences of complex numbers, the sum of whose absolute squares con-
verges. Impressed by the fact that by virtue of the Riesz-Fischer theorem
these two spaces can be shown to be isomorphic (and isometric) and

"hence, in spite of their apparent dissimilarity, to be essentially the same
space, von Neumann named all spaces of this structure after Hizoert. The
fact that this isomorphism entails the equivalence between Heisenberg's
matrix mechanics and Schrédinger’s wave mechanics made von Neumann
aware of the importance of Hilbert spaces for the mathematical formula-
tion of quantum mechanics.

To review this formulation let us recall some of its fundamental notions.
A (closed) subspace S of a Hilbert space J( is a linear manifold of vectors
(i.e., closed under vector addition and multiplication by scalars) which is
closed in the metric and hence a Hilbert space in its own right. The
orthogonal complement S+ of § is the set of all vectors which are ortho-
gonal to all vectors of S. A mapping y—>@=A4y of a linear manifold %,
into JC is a linear operator A, with domain 9., if A(ay,+ by,)=ady,+
bAY, for all Y,,y, of D, and all a,b of ¥. The image of D, under 4 is
the range A, of A. The linear operator A is continuous if and only if it is
bounded [i.e., if and only if ||4¢l|/||¢|l is bounded, where ||| denotes the
norm (,)'/2 of ). A’ is an extension of A, or A’ A, if it coincides with A
on 9, and 9D ,DD,. Since every bounded linear operator has a unique
contmuous extension to C, its domain can always be taken as (.

The adjoint A* of a bounded linear operator 4 is the unique operator
A* which satisfies (¢, Ay)=(4 *@,¢) for all @,y of I. 4 is self-adjoint if
A=A*. A is unitary if AA* = A*A =1, where I is the identity operator. If
S is a subspace of ¥, then every vector i can uniquely be written
Y=yg Y51, where ¢ is in § and yg. is in S+, so that the mapping
Y- = P defines the projection Pg as a bounded self-adjoint idempo-
tent (i.e., P2= Pg) linear operator. Conversely, if a linear operator P is’

Mathematics (Hawthorn, New York, 1970), pp. 550-576; M. Kline, Mathematical Thought
from Ancient to Modern Times (Oxford University Press, New York, 1972), pp. 1091-1095.

Ho0552%



4 ' Formalism and Interpretations

bounded, self-adjoint, and idempotent, it is a projection. Projections and
subspaces correspond one to one. The subspaces S and T are orthogonal -
li.e., (9,4)=0 for all p of § and all Y of T}, in which case we also say that
Pg and P, are orthogonal if and only if PgP,= PrPg=0 (null operator);
and Ej"_,Ps} is a projection if and only if Ps} Pg =0 for j#k. '

S CT (i.e, the subspace § is a subspace of T, in which case we also
write Pg < Pp) if and only if PgPr= P Pg= Pg. In this case Pr— Pg is a
projection into the orthogonal complement of S in 7, that is, the set of all
vectors of T which are orthogonal to every vector of S.

For an unbounded linear operator A—which if it is symmetric {i.e., if
(9, AY)=(Ap,y) for all ¢,y of D ,] cannot, according to the Hellinger-
Toeplitz theorem, have a domain which is 3 but may have a domain
which is dense in JC—the self-adjoint is defined as follows. The set of all
vectors ¢ for which there exists a vector ¢* such that (¢, 4¢)=(¢*,y) for
all y of 9, is the domain 9 ,. of the adjoint of A and the adjoint 4™ of A
is defined by the mapping p—¢*=A4*¢. 4 is self-adjoint if A=A4".

According to the spectral theorem,’ to every self-adjoint linear operator 4
corresponds a unique resolution of identity, that is, a set of projections
E™Q) or briefly E,, parametrized by real A, such that (1) E,< E,, for
AN, ) E_,=0, @) E,=I, @) Ey,o=E,, (5) I=[% dE, (6) 4
= [® _AdE, [which is an abbreviation of (@,A¢)=[*_Ad(q, E,y), where
the integral is to be interpreted as the Lebesgue-Stieltjes integral®], and
finally (7) for all A, E, commutes with any operator that commutes with 4.
The spectrum of A is the set of all A which are not in an interval in which
E, is constant. Those A at which E, is discontinuous (“jumps”) form the
point spectrum which together with the continuous spectrum constitutes the
spectrum.

Now, A is an eigenvalue of A if there exists a nonzero vector @ called
eigenvector belonging to A, in %, such that Ap=Ap. An eigenvalue is

>This theorem was proved by von Neumann in “Allgemeine Eigenwerttheorie Hermitischer
Funktionaloperatoren,” Mathematische Annalen, 102, 49-131 (1929), reprinted in J. von
Neumann, Collected Works, A. H. Taub, ed. (Pergamon Press, New York, 1961), Vol. 2, pp.
3-85. It was proved independently by M. H. Stone using a method earlier applied by T.
Carleman to the theory of integral equations with singular kernel, cf. M. H. Stone, Linear
Transformations in Hilbert Space (American Mathematical Society Colloquium Publications,
Vol. 15, New York, 1932), Ch. 5. Other proofs were given by F. Riesz in 19309 B. O.
Koopman and J. 1, Doob in 1934, B. Lengyel in 1939, J. L. B. Cooper in 1945, and E. R.
Lorch in 1950. i -

& £ 5f(\)dg (M) is defined as limZ7_, fAN g, . ) —8()), where A, A,... A, is a partition of
the interval [4,5), A; is in the jth interval, and the limes denotes the passage to Ay1—A;=0for
all j.
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nondegenerate if the subspace formed by the eigenvectors belonging to this
eigenvalue is one-dimensional.” Every A in the point spectrum of A is an
eigenvalue of A. If the spectrum of 4 is a nondegenerate point spectrum
A (j=1,2,...), then the spectral decomposition (6) of A reduces to A =3\ P,
where P, is the projection on the eigenvector (“ray”) g, belonging to A.. In
facl, in this case dE, = E, , ,, — E, %0 only if A, lies in [\,A+ d)) where dE,
becomes P, To vindicate this conclusion by an elementary consideration,
let y =3 q;(¢;,¥) be an expansion of any vector  in terms of the eigenvec-
tors @; of A; then Ay =2ZNq(g;,§) =2\ Py for all §.

With these mathematical preliminaries in mind and following von
Neumann, we now give an axiomatized presentation of the formalism of
quantum mechanics. The primitive (undefined) notions are system, observ-
able (or “physical quantity’” in the terminology of von Neumann) and
state. -

AxioM 1. To every system corresponds a Hilbert space H whose
vectors (state vectors, wave functions) completely describe the
states of the system.

AXIOM 1I.  To every observable & corresponds uniquely a self-adjoint
operator A acting in X.

AxioM 11.  For a system in state ¢, the probablhty prob (A, A,l¢) that

; the result of a measurement of the observable @, represented
by A, lies between A, and A, is given by [|(E,,— E, )ol[*, where
E, is the resolution of the 1dent1ty belongmg to A.

AXIOM Iv. - The time development of the state vector ¢ is determined by
the equation Ho= ihdg/dt (Schrodinger equation), where the
Hamiltonian H is the evolution operator and 4 is Planck’s
constant divided by 2. :

AXIOM V. If a measurement of the observable &, represented by A,
yields a result between A, and A,, then the state of the system
immediately after the measurement is an elgcnfunctlon of
E\,-E,.

The correspondence Axioms 1 and 11 associate the primitive notions with
mathemat‘ cal entities. Von Neumann’s original assumption that obser-
vables and self-adjoint operators stand in a one-to-one correspondence and
that all nonzero vectors of the Hilbert space are state vectors had to be

TThe dimension of a Hilbert space is the cardinality of a complete orthonormal system of
~ vectors in it.
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abandoned in view of the existence of superselection rules, discovered in
1952 by G. C. Wick, E. P. Wigner, and A. S. Wightman.
_ The often postulated statement that the result of measuring an observ-

able @, represented by A, is an element of the spectrum of 4 follows as a
logical consequence from Axiom III. Moreover, the theorem that the
expectation value Exp A4 of @ for a system in state ¢, defined by the -
self-explanatory expression lim,_,2 A; prob,(\,A;+Alg), is (p,4p) can
easily be proved on the basis of Axioms I to III. Conversely, by the
technique of characteristic functions as used in the theory of probability, it
can be shown that this theorem entails Axiom III. Let us add that in the
simple nondegenerate discrete case the just-mentioned definition of Exp A
becomes ZA;prob,(A|p), where, according to Axiom Ill, this probability
prob, () is given by |(%), ¢) | |

“Quantum statics,” the part of quantum mechanics which disregards
changes in time, is based, as we see, essentially only on one axiom, Axiom
II. This axiom, moreover, is the only one which establishes some connec-
tion between the mathematics and physical data and therefore plays a
major role for all questions of interpretations. In its ordinary interpretation
it contains as a particular case Born’s well-known probabilistic interpreta-
tion of the wave function according to which for a measurement of the
position observable & the probability density of finding the system at the
position g is given by |(g). In fact, if the operator Q, representing the
observable 2, is defined by Qy(q)=q¥(q), its spectral decomposition is
given by E,¥(g)=v(g) for g<A and E,y(g)=0 for g>A and hence,
according to Axiom I, the probability that A, < g <A, is [I(Ey,— Ey¥I*.
= [3¢(q)|*dq, which proves the contention.

Axiom IV, the axiom of “quantum dynamics,” can be replaced by
postulating a one-parameter group of unitary operators U(#) acting on the
Hilbert space of the system such that ()= U(1)9(0), and applying Stone’s
theorem according to which there exists a unique self-adjoint operator H
such that U(f)=exp(—itH); it may also be equivalently formulated in
terms of the statistical operator. Finally, Axiom V states that in the
discrete case, immediately after having obtained the eigenvalue A; of 4
when measuring @, the state of the system is an eigenvector of P;, the
projection on the eigenvector belonging to A; for this reason Axiom V is
called the “projection postulate.” It is more controversial than the rest and
has indeed been rejected by some theorists on grounds to be discussed in
due course.

Although a complete derivation of all quantum mechanical theorems,
with the inclusion of those pertaining to simultaneous measureéments and
identical particles, would require some additional postulates, these five
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axioms suffice for our purpose to characterize von Neumann’s formalism
of quantum mechanics, which is the one generally accepted.

In addition to the notions of system, observable, and state, the notions
of probability and measurement have been used without interpretations.
Although von Neumann used the concept of probability, in this context, in
the sense of the frequency interpretation, other interpretations of quantum
mechanical probability have been proposed from time to time. In fact, all
major schools in the philosophy of probability, the subjectivists, the a
priori objectivists, the empiricists or frequency theorists, the proponents of
the inductive logic interpretation and those of the propensity interpreta-
tion, laid their -claim on this notion. The different interpretations of
probability in quantum mechanics may even be taken as a kind of criterion
for the classification of the various interpretations of quantum mechanics.
Since the adoption of such a systematic criterion would make it most
difficult to present the development of the interpretations in their historical
setting it will not be used as a guideline for our text. 8

Similar considerations apply a fortiori 1 the notion of measurement in
quantum mechanics. This notion, however it is interpreted, must somehow
combine the primitive concepts of system, observable, and state and also,
through Axiom III, the concept of probability. Thus measurement, the
scientist’s ultimate appeal to nature, becomes in quantum mechanics the
most problematic and controversial notion because of its key position.

The major part of the operator calculus in Hilbert space and, in
particular, its spectral theory had been worked out by von Neumann
before Paul Adrien Maurice Dirac published in 1930 his famous treatise’
in which he presented a conceptually most compact and notationally most
elegant formalism for quantum mechanics. Even though von Neumann
admitted that Dirac’s formalism could “scarcely be surpassed in brevity
and elegance,” he criticized it as deficient in mathematical rigor, especially
in view of its extensive use of the (at that time) mathematically unaccept-
able delta-function. Later, when Laurent Schwartz’ theory of distributions
made it possible to incorporate Dirac’s improper functions into the realm
of rigorous mathematics—a classic example of how physics may stimulate

%The reader interested in working out such a classification will find for his convenience
bibliographical references in Selected Bibliography I in the Appendix at the end of this
chapter. M. Strauss’ essay “Logics for quantum mechanics,” Foundations of Physics 3, 265-276
(1973), contains useful suggestions of how to carry out such a classification.

%P. A. M. Dirac, The Principles of Quantum Mechanics (Clarendon Press, Oxford, 1930. 1935,
1947, 1958); Die Prinzipien der Quantenmechanik (Hirzel, Leipzig, 1930); Les Principes de ia
Mécanique Quantique (Presses Universitaires de France, Paris, 1931); Osnovi Kvaniovoj
Mekhaniki (GITTL, Moscow, Leningrad, 1932, 1937).
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the growth of new branches in mathematics—Dirac’s formalism seemed
not to be assimilable to von Neumann's.!® Yet due to its immediate
intuitability and notational convenience Dirac’s formalism not only sur-
vived but became the favorite framework for many expositions of the
theory. The possibility of assimilating Dirac’s formalism with von Neu-
mann’s approach has recently become the subject of important investiga-
tions such as Marlow’s'! presentation of the spectral theory in terms of
direct integral decompositions of Hilbert space, Roberts’*? recourse to
“rigged” Hilbert spaces as well as the investigations by Hermann'® and
Antoine." :

Other formalisms of quantum mechanics such as the algebraic approach,
initiated in the early 1930s by von Neumann, E. P. Wigner, and P. Jordan
and elaborated in the 1940s by I. E. Segal, or the quantum logical
approach, started by G. Birkhoff and von Neumann in 1936 and perfected
by G. Mackey in the late 1950s, the former leading to the C*-algebra
theory of quantum mechanics and the latter to the development of modern
quantum logic, will be discussed in their appropriate contexts. On the other
hand, we shall hardly feel the need to refer to the S-matrix approach,
which, anticipated.in 1937 by J. A. Wheeler,'* was developed in 1942 by
Wernér Heisenberg'® for elementary particle theory—although it has re-
cently been claimed!” to be the most appropriate mathematical framework
for a “pragmatic version” of the Copenhagen interpretation of the theory.
Nor shall we have many occasions to refer to the interesting path integral
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