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Preface

This book is intended to complement my Elements of Algebra, and it
is similarly motivated by the problem of solving polynomial equations.
However, it is independent of the algebra book, and probably easier. In
Elements of Algebra we sought solution by radicals, and this led to the
concepts of fields and groups and their fusion in the celebrated theory of
Galois. In the present book we seek integer solutions, and this leads to the
concepts of rings and ideals which merge in the equally celebrated theory

of ideals due to Kummer and Dedekind. '

Solving equations in integers is the central problem of number theory,
so this book is truly a number theory book, with most of the results found
in standard number theory courses. However, numbers are best understood
through their algebraic structure, and the necessary algebraic concepts—
rings and ideals—have no better motivation than number theory.

The first nontrivial examples of rings appear in the number theory
of Euler and Gauss. The concept of ideal—today as routine in ring the-
ory as the concept of normal subgroup is in group theory—also emerged
from number theory, and in quite heroic fashion. Faced with failure of
unique prime factorization in the arithmetic of certain generalized “inte-
gers”, Kummer created in the 1840s a new kind of number to overcome
the difficulty. He called them “ideal numbers” because he did not know
exactly what they were, though he knew how they behaved. Dedekind in
1871 found that these “ideal numbers” could be realized as sets of actual
numbers, and he called these sets ideals.

Dedekind found that ideals could be defined quite simply; so much so
that a student meeting the concept today might wonder what all the fuss
is about. It is only in their role as “ideal numbers”, where they realize
Kummer’s impossible dream, that ideals can be appreciated as a genuinely
brilliant idea.

vii



viii Preface

Thus solution in integers—Ilike solution by radicals—is a superb set-
ting in which to show algebra at its best. It is the right place to introduce
rings and ideals and the right place first to apply them. It even gives an
opportunity to introduce some exotic rings, such as the quaternions, which
we use to prove Lagrange’s theorem that every natural number is the sum
of four squares.

The book is based on two short courses (about 20 lectures each) given
at Monash University in recent years; one on elementary number theory
and one on ring theory with applications to algebraic number theory. Thus
the amount of material is suitable for a one-semester course, with some
variation possible through omission of the optional starred sections. A
slower-paced course could stop at the end of Chapter 9, at which point
most of the standard results have been covered, from Euclid’s theorem that
there are infinitely many primes to quadratic reciprocity.

It should be stressed, however, that this is not meant to be a standard
number theory course. I have tried to avoid the ad hoc proofs that once
gave number theory a bad name, in favor of unifying ideas that work in
many situations. These include algebraic structures but also ideas from
elementary number theory, such as the Euclidean algorithm and unique
prime factorization. In particular, I use the Euclidean algorithm as a bridge
to Conway’s visual theory of quadratic forms, which offers a new approach
to the Pell equation.

There are exercises at the end of almost every section, so that each
new idea or proof receives immediate reinforcement. Some of them focus
on specific ideas, while others recapitulate the general line of argument (in
easy steps) to prove a similar result. The purpose of each exercise should be
clear from the accompanying commentary, so instructors and independent
readers alike will be able to find an enjoyable path through the book.

My thanks go to the Monash students who took the courses on which
the book is based. Their reactions have helped improve the presentation in
many ways. I am particularly grateful to Ley Wilson, who showed that it
is possible to master the book by independent study.

Special thanks go to my wife Elaine, who proofread the first version
of the book, and to John Miller and Abe Shenitzer, who carefully read the
revised version and saved me from many mathematical and stylistic errors.

JOHN STILLWELL
South Melbourne, July 2002
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1

Natural numbers and integers

PREVIEW

Counting is presumably the origin of mathematical thought, and it is
certainly the origin of difficult mathematical problems. As the great
Hungarian problem-solver Paul Erdés liked to point out, if you can
think of an open problem that is more than 200 years old, then it is
probably a problem in number theory.

In recent decades, difficulties in number theory have actually be-
come a virtue. Public key encryption, whose security depends on
the difficulty of factoring large numbers, has become one of the
commonest applications of mathematics in daily life.

At any rate, problems are the life blood of number theory, and the
subject advances by building theories to make them understandable.
In the present chapter we introduce some (not so difficult) problems
that have played an important role in the development of number
theory because they lead to basic methods and concepts.

e Counting leads to induction, the key to all facts about num-
bers, from banalities such as a +b = b +a to the astonishing
result of Euclid that there are infinitely many primes.

o Division (with remainder) is the key computational tool in Eu-
clid’s proof and elsewhere in the study of primes.

e Binary notation, which also results from division with remain-
der, leads in turn to a method of *“fast exponentiation™ used in
public key encryption.

e The Pythagorean equation x* +y* = z? from geometry is equally
important in number theory because it has integer solutions.



2 ' 1 Natural numbers and integers

In this chapter we are content to show these ideas at work in few
interesting but seemingly random situations. Later chapters will de-
velop the ideas in more depth, showing how they unify and explain
a great many astonishing properties of numbers.

1.1 Natuoral numbers

Number theory starts with the natural numbers
1,2,3,4,5,6,7,8,9,...,

generated from 1 by successively adding 1. We denote the set of natural
numbers by N. On N we have the operations + and x, which are simple in
themselves but lead to more sophisticated concepts.

For example, we say that a divides n if n = ab for some natural numbers
a and b. A natural number p is called prime if the only natural numbers
dividing p are 1 and p itself.

Divisibility and primes are behind many of the interesting questions in
mathematics, and also behind the recent applications of number theory (in
cryptography, internet security, electronic money transfers etc.).

The sequence of prime numbers begins with

2,3,5,7,11,13,17,19,23,29,31,37, ...

and continues in a seemingly random manner. There is so little pattern in
the sequence that one cannot even see clearly whether it continues forever.
However, Euclid (around 300 BCE) proved that there are infinitely many
primes, essentially as follows.

Infinitude of primes. Given any primes p,,p,, ps,. .., P, we can always
find another prime p.

Proof. Form the number

N:p1P2P3"'Pk+1'

Then none of the given primes p,, p,, p3,...,p, divides N because they all
leave remainder 1. On the other hand, some prime p divides N. If N itself
is prime we can take p = N, otherwise N = ab for some smaller numbers a
and b. Likewise, if either a or b is prime we take it to be p, otherwise split
a and b into smaller factors, and so on. Eventually we must reach a prime
p dividing N because natural numbers cannot decrease forever. O



1.2 Induction 3

Exercises

Not only is the sequence of primes without apparent pattern, there is not even
a known simple formula that produces only primes. There are, however, some
interesting “near misses”.

1.1.1 Check that the quadratic function n*> +n + 41 is prime for all small values
of n (say, for n up to 30).

1.1.2 Show nevertheless that n% +n -+ 41 is not prime for certain values of n.

1.1.3 Which is the smallest such value?

1.2 Induction

The method just used to find the prime divisors of N is sometimes called
descent, and it is an instance of a general method called induction.

The “descent” style of induction argument relies on the fact that any
process producing smaller and smaller natural numbers must eventually
halt. The process of repeatedly adding 1 reaches any natural number » in a
finite number of steps, hence there are only finitely many steps downward
from n. There is-also an “ascent” style of induction that imitates the con-
struction of the natural numbers themselves—starting at some number and
repeatedly adding 1.

An “ascent” induction proof is carried out in two steps: the base step
(getting started) and the induction step (going from n to n+-1). Here is an
example: proving that any number of the form k> 4 2k is divisible by 3.

Base step. The claim is true for k = 1 because 17 +2 x 1 = 3, which is
certainly divisible by 3.

Induction step. Suppose that the claim is true for k& = n, that is, 3
divides n + 2n. We want to deduce that it is true for k = n+ 1, that is, that
3 divides (n+1)> +2(n+1). Well,

(n+1342(n+1)
=n’+3n+3n+142n42
= +2n+3n*+3n+3
=n*+2n+3(n* +n+1)
And the right-hand side is the sum of »n® + 2n, which we are supposing

to be divisible by 3, and 3(n? +n + 1), which is obviously divisible by 3.
Therefore (n+1)3 4+ 2(n+ 1) is divisible by 3, as required. a



4 1 Natural numbers and integers

Induction is fundamental not only for proofs of theorems about N but
also for defining the basic functions on N. Only one function needs to be
assumed, namely the successor function s(n) = n+ 1; then + and x can be
defined by induction. In this book we are not trying to build everything up
from bedrock, so we shall assume + and x and their basic properties, but
it is worth mentioning their inductive definitions, since they are so simple.

For any natural number m we define m+ 1 by

m+1=s(m).
Then, given the definition of m + n for all m, we define m+ s(n) by
m+s(n) = s(m~+n).

1t then follows, by induction on n, that m + n is defined for all natural num-
bers m and n. The definition of m X n is similarly based on the successor
function and the + function just defined:

mxl=m

mxs(n)y=mxn+m.

From these inductive definitions one can give inductive proofs of the basic
properties of + and x, for example m+n =n+mand I{m+n) = Im+In.
Such proofs were first given by Grassmann (1861) (in a book intended
for high school students!) but they went unnoticed. They were rediscov-
ered, together with an analysis of the successor function itself, by Dedekind
(1888). For more on this see Stillwell (1998), Chapter 1.

Exercises

An interesting process of descent may be seen in the algorithm for the so-called
Egyptian fractions introduced by Fibonacci (1202). The goal of the algorithm is
to represent any fraction ;’f with 0 < b < a as sum of distinct terms % called unit
fractions. (The ancient Egyptians represented fractions in this way.)

Fibonacci’s algorithm, in a nutshell, is to repeatedly subtract the largest pos-
sible unit fraction. Applied to the fraction % for example, it yields

11 1 5 . . .
= —. subtracting the largest unit fraction, % less than %,

2 2 12
5 1 1 . . . 5
73513 subtracting the largest unit fraction, 3, less than 5,
1 1 1
hence —=-+=-+—

12 2312



