Practical Object-Oriented
Design with UML

Practical Object-Oriented
Design with UML

o) R R UML Sk

o |

Mark Priestley
University of Westd

B KFHMWH
McGraw-Hill Companies, Inc.

(R)HEF 1585

Practical Object-Oriented Design with UML.
Mark Priestley

Copyright © 2000 by The McGraw-Hill Companies, Inc.

Original English Language Edition published by The McGraw-Hill Companies, Inc.
All rights Reserved.

For sale in Mainland China only.

FFHREE R H McGraw-Hill iR B #AE R K% B ERER N (R aEE S R
FrRATB X A& P X)) SR R R K AT
REHBREBEF T, AEUAEAFATHH D REPHETES .

FPHEVEREXFHEREBP IR, THREETEHE,
LR AT RRALUR F VEALS [J BiE 5 . 01-2000-3172

EBERE%E (c1p) ¥iE

T X 2R T UML S8 . 3830/ () BHiFF (Priestley, M.)4 % . — BLEIA. — Jb 5.
T AR I IRAE, 2000. 11

(REIHENBEAS)

ISBN 7-302-04098-2

I.m@m- I.%- 0. BEMXRES, UOML-ZF#it-%X V. TP312
o [A B 18 CIP % 5 (2000) 5 75978 5

HARE : HEREHRM ACRERRFEED AR, % 100084)
http:// www. tup. tsinghua. edu. cn

BRI . EHRKEERT

RITE: FeHEBEE RTH

: 787X 960 1/16 Epgk. 22.25

: 200045 12 A% 1/ 2001 4E 3 A4 2 KENRI

: ISBN 7-302-04098-2/TP « 2415

: 3001~ 6000

: 39.00 7

Mt 8% F H
SO A S M

tH kR & /Y &

SR, RINREE HREMNEE BFLES, BhEKE—ERLSE SR,
i 145 75 BB 2 P R B SN SCYERE 2B B S ML S BB 2 RS G 3 Aot
;& LERESWIHE, FARSTEE, A NRE 5B SNRTIET O LM
EARRMAE S, EARENE, IO AR ERRN ARSI SCHRRRE BNEE . FE
F b, 2R E R A B MM KFERBRERN T E —RIE T AR R A LR
BFE. Mo, ERAPEIE T XTRENZENMBEER, FERRERFR 7L
IR A, REFRET LRI EERR, HH EUTHETRE - EHENFE
RECRREMENHES LS, ABEXHEANTE, RO EHEE T —HEMNTE
LR 0 T BT AR AR A 3 4 BOb, EAT R B R MR . FRAL IR [413 4% L4 R R A
W AR E PRSBSOS A R E S 224, IR A R4 T HE A3, HE &%
R U P A B Y R

AT R VT A 4 5 RIS B R B R B LA AT, ERME W E R B
BRUR R R E AMA T EALBE M, BRI R AT Ot ENLEE A GEE
BOMEBES, EEamBRmAENTE.

B HRF A
(REHENBEFASCEERBO)THA
1999.6

PREFACE

Mr Palomar’s rule had gradually altered: now he needed a great vanety of
models, perhaps interchangeable, in a combining process, in order to find
the one that would best fit a reality that, for its own part, was always made
of many different realities, in time and in space.

Italo Calvino

This book is a revised edition of my earlier book Practical Object-Oriented Design. It
shares the same aims as the earlier book, namely to provide a practical introduction to
design which will be of use to people with experience of programming who want to
learn how to express the design of object-oriented programs more abstractly.

The most significant change from the earlier book is that the notation used is now
that of UML, the Unified Modeling Language. UML is to a large extent an evolutionary
development of the OMT language used in the earlier book, so this change has not
necessitated great changes in the structure and content of the book.

As with the earlier book, much emphasis is placed on clearly explaining the
constructs and notation of the design language, and demonstrating the close relationship
between the design and the implementation of object-oriented programs. Unlike
questions of methodology and process, these issues are treated rather superficially
in many books. If they are not clearly understood, however, it is difficult to make
meaningful use of a notation such as UML.

In addition, the book addresses a number of pragmatic issues which are often
omitted from design books, such as the integration of a design with an existing
framework, the use of patterns in design, dealing with persistent data, and the physical
design of object-oriented programs.

.
xi

xii PREFACE

UML is a much larger and more complex language than OMT, and when learning
it there is a danger of being overwhelmed by details of the notation. In order to avoid
this, the book uses a subset of UML that is sufficient to express all the significant
features of medium-sized object-oriented programs. The most significant omissions are
any coverage of concurrency, activity diagrams, and anything other than a brief mention
of component and deployment diagrams. These aspects of the language are obviously
important for ‘industrial-strength’ applications of UML, but these lie somewhat outside
the experience of the intended audience of this book.

The Java language is used for programming examples. In order to ensure maximum
portability, the use of the language has been kept as straightforward as possible and the
Java 1.0 event model is used in preference to later, more complex, models. For the
benefit of readers who prefer to use C++, the book’s web site will provide alternative
versions of those sections of the book which are specific to the Java language.

STRUCTURE OF THE BOOK

Following an introductory chapter, Chapter 2 introduces the basic concepts of object
modelling in the context of a simple programming example. Chapters 3 to 5 contain a
more extended example of the use of UML in designing a diagram editor application,
while chapters 6 to 8 present the most important UML notations systematically.

Chapters 2 to 5 introduce many features of UML in the context of extended
examples before a more systematic presentation of the language is given in chapters
6 to 8. However, the diagram editor case study in chapters 3 to 5 is not referred to in
the text of chapters 6 to 8, so readers who prefer to cover the language systematically
before looking at its use can move directly from chapter 2 to chapter 6, returning later
to chapters 3 to 5.

Chapters 9 to 13 are more or less independent of each other and can be read in
any order. Chapter 9 covers the use of constraints with UML, and the OCL language.
Chapter 10 presents systematic techniques for the implementation of designs, building
on some basic material presented in Chapter 5. Chapter 11 covers some miscellaneous
issues including the relationship between logical and physical design, and the impact
of non-functional requirements on a design, and Chapter 12 discusses some important
principles of object-oriented design, and the popular area of design patterns. A case
study is presented in Chapter 13, and it is planned that further case studies will be
available from the book’s web site.

FURTHER RESOURCES
A web page for this book has been set up, providing access to the source code for the

case studies used in the book, solutions to selected exercises, additional case studies and
other related material. It can be found at the following URL:

http://www.mcgraw-hill.co.uk/textbooks/priestley

PREFACE xiii

A instructor’s manual, including suggested solutions to all exercises, is available
to bona fide academics. Information on how to obtain the manual can be found on the
publisher’s web site.

ACKNOWLEDGEMENTS

In the preparation of this book, my most significant debt is to the readers of the earlier
book who have taken the trouble to communicate to me their opinions. 1 have much
appreciated this steady trickle of, on the whole, positive feedback. It is in the nature of
publishing that the only concrete way I have of expressing my gratitude is to hope that
you will all immediately buy this new book, and find it just as useful.

The enthusiasm of Elizabeth Robinson for this new edition was instrumental in
motivating me to complete the book, and I would also like to thank the anonymous
reviewers of the manuscript for their helpful comments. Thanks also to Alison, for
providing some breaks that neither of us really needed, and a big thank you to Rosemary,
Felix and Alasdair.

Preface

1 Introduction to UML

1.1 Models and modelling

1.2 Methodologies

1.3 The Unified Modeling Language
14 Design models and code

1.5 The software development process
16 Summary

1.7 Exercises

2 Modelling with Objects

2.1 The object model

22 Objects

2.3 Object properties

24 Avoiding data replication

25 Links

2.6 Message passing

27 Polymorphism

2.8 Dynamic binding

29 Class diagrams

2.10 The applicability of the object model
2.11 Summary

2.12 Exercises

CONTENTS

xi

LA = ek

12
13
13

15

15
17
19
21
21
25
27
30
31
33
34
35

vi CONTENTS

3.1
32
33
34
35
3.6
37
38
39
3.10
3.11
3.12

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
49
4.10
4.11
4.12
4.13

5.1
52
53
54
55
5.6
5.7
5.8
59

Diagram Editor: Use Case View

Statement of requirements
The use case view
Creating new diagrams
Use case realization
Creating new elements
Selecting elements
Deleting elements
Moving and resizing elements
Use case extension

Use case diagrams
Summary

Exercises

Diagram Editor: Design View

The role of the design view
Classes and associations
Generalization

Creation tools

Selection tools

Features of classes

Complete class diagram
Dynamic modelling of the diagram editor
A statechart for creation tools
A statechart for selection tools
Statecharts for other classes
Summary

Exercises

Diagram Editor: Implementation View

Application frameworks

The applet framework
Implementation of classes
Implementation of associations
Implementation of statecharts
Managing tools

The document/view architecture
Summary

Exercises

Class Diagrams

Primitive notions

38
38

43
44
46
51
54
55
58
60
61
62

65

65
66
70
72
73
75
76
77
79
82
84
85
85

88
92
96
98
102
105
106
108
109

111
112

6.2
6.3
6.4
6.5
6.6
6.7
6.8
69
6.10
6.11
6.12
6.13
6.14
6.15

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
79
7.10
7.11
7.12
7.13

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12

Classes

Describing objects with classes

Associations

The need for generalization
Generalization and specialization
Inheritance of attributes and operations
Association generalization

Aggregation
Composite objects
Association classes
Qualified associations
Multiple inheritance
Summary

Exercises

Interaction Diagrams

Collaborations
Classifier roles
Association roles
Transient links
Interaction diagrams
Object creation
Object destruction
Iterated messages
Multiobjects
Conditional messages
Messages to self
Summary

Exercises

Statecharts

State-dependent behaviour
States, events and transitions

Initial and final states
Guard conditions
Actions

Activities

Composite states
History states

Summary of the CD player
Dynamic modelling in practice

Time events
Activity states

CONTENTS vii

114
115
119
125
126
129
133
135
138
140
144
146
150
152

160

160
162
163
163
164
168
169
170
171
173
176
177
178

180

181
182
183
184
186
188
190
193
194
195
200
200

viii CONTENTS

8.13
8.14
8.15

9

9.1
9.2
9.3
9.4
9.5
9.6
9.7
98
9.9
9.10

10

10.1
10.2
10.3
104
10.5
10.6
10.7
10.8
10.9
10.10
10.11

11

11.1
11.2
11.3
11.4
11.5
11.6
11.7

12

12.1
122
12.3

Summary of the ticket machine
Summary
Exercises

Constraints

Standard constraints

The Object Constraint Language
The context of a constraint
Navigation expressions

Objects and collections
Constraints

Stereotyped constraints
Constraints and generalization
Summary

Exercises

Implementation Strategies

Implementing associations
Unidirectional implementations
Bidirectional implementations
Implementing qualifiers
Implementing associations as classes
Implementing constraints
Implementing statecharts
Persistency

Interfacing to databases
Summary

Exercises

Design Pragmatics

Physical design

Interfaces

Reverse engineering
Templates

Optimization of design models
Summary

Exercises

Principles and Patterns

The open—closed principle
No concrete superclasses
Decouple the interface hierarchy

201
201
203

207

208
209
210
211
214
218
221
223
224
225

227

228
229
232
238
240
242
243
247
249
252
253

254

255
260
261
264
265
270
271

272

273
277
279

12.4 The Liskov substitution principle

12.5 Interactions determine structure

12.6 Design patterns

12.7 Recursive structures

12.8 The State and Strategy patterns

12.9 MVC, document/view and Observer

12.10 Applying Visitor to the stock control program
12.11 Summary

12.12 Exercises

13 Cab Dispatching System

13.1 Use cases

13.2 Handling immediate jobs
13.3 Handling prebooked jobs
13.4 Allocating a cab to a job
13.5 Job confirmation

13.6 Cancelling a job

13.7 Progression of jobs

13.8 Completing the static model
13.9 Implementation overview
13.10 Summary

13.11 Exercises

A Summary of Notation Used

A.1 Common notations
A.2 Use case diagrams

A3 Object diagrams

A4 Collaborations

AS Sequence diagrams
A6 Collaboration diagrams
A.7 Class diagrams

A.8 Statechart diagrams
A.9 Component diagrams
A.10 Templates

References

Index

CONTENTS ix

281
282
284
286
290
291
294
298
298

360

300
301
307
309
312
315
316
317
318
321
322

323

323
325
326
326
327
328
329
331
332
332

334

336

1

INTRODUCTION TO UML

According to its designers, UML, the Unified Modeling Language, is ‘a general-purpose
visual modeling language that is used to specify, visualize, construct and document the
architecture of a software system’. This chapter explains how models are used in the
software development process, and the role of a language such as UML. The high-level
structure of UML is described, together with an informal account of its semantics and
the relationship between design notations and code.

1.1 MODELS AND MODELLING

The use of models in the development of software is extremely widespread. This section
explains two characteristic uses of models, to describe real-world applications and also
the software systems that implement them, and then discusses the relationships between
these two types of model.

Models of programs

Software is often developed in the following manner. Once it has been determined that
a new system is to be built, an informal description is written stating what the software
should do. This description, sometimes known as a requirements specification, is often
prepared in consultation with the future users of the system, and can serve as the basis
for a formal contract between the user and the supplier of the software.

The completed requirements specification is then passed to the programmer or
project team responsible for writing the software; they go away and in relative isolation
produce a program based on the specification. With luck, the resulting program will be
produced on time, within budget, and will satisfy the needs of the people for whom the
original proposal was produced, but in many cases this is sadly not the case.

2 PRACTICAL OBJECT-ORIENTED DESIGN WITH UML

In an attempt to address some of these problems, much effort has been devoted
to analysing the process by which software is developed, and many methods have
been proposed suggesting how it could be done better. Processes can be illustrated
graphically; for example, the diagram in Figure 1.1 depicts the rudimentary process
outlined in the previous paragraph.

Requirements Source
Specification Code

Figure 1.1 A primitive model of software development

In this diagram the icons represent the two different documents involved in the
development of the system, namely the original specification and the source code itself.
The dashed arrow states that the code depends on the requirements specification in
the sense that the functionality provided by the system should be that specified in the
requirements. In many real developments the situation is less clear-cut than this: it is
a common experience to find that writing code or seeing a prototype system running
changes one’s view of what a proposed system should do.

The description of the desired system from which a development process starts
can take many forms. Very often a written specification forms the starting point of
the development. Such a specification might be either a very informal outline of the
required system, or a highly detailed and structured functional specification. In small
developments the initial system description might not even be written down, but only
exist as the programmer’s informal understanding of what is required. In yet other cases
a prototype system may have been developed in conjunction with the future users, and
this could then form the basis of subsequent development work. In the discussion above
all these possibilities are included in the general term ‘requirements specification’, but
this should not be taken to imply that only a written document can serve as a starting
point for development.

It should also be noted that Figure 1.1 does not depict the whole of the software life
cycle. In this book, the term ‘software development’ is used in rather a narrow sense,
to cover only the design and implementation of a software system, and many other
important aspects of software engineering are ignored. A complete project plan would
also cater for crucial activities such as project management, requirements analysis,
quality assurance and maintenance.

When a small and simple program is being written by a single programmer,
there is little need to structure the development process anty more than has been done
above. Experienced programmers can keep the data and subroutine structures of such a
program clear in their minds while writing it, and if the behaviour of the program is not
what is expected they can make any necessary changes directly to the code. In certain
situations this is an entirely appropriate way of working.

INTRODUCTION TO UML 3

With larger programs, however, and particularly if more than one person is involved
in the development, it is usually necessary to introduce more structure into the process.
Software development is no longer treated as a single unstructured activity, but is instead
broken up into a number of subtasks, each of which usually involves the production of
some intermediate piece of documentation.

Figure 1.2 illustrates a software development process which is slightly more
complex than the one shown in Figure 1.1. The programmer is no longer writing code
based on the requirements specification alone, but has first of all produced a structure
chart showing how the overall functionality of the program is split into a number of
subroutines, and illustrating the calling relationship between the subroutines.

Requirements Structure
Specification Chart

|11

Source Code

Figure 1.2 A more complex software development process

Figure 1.2 shows that the structure chart depends on the information contained
in the requirements specification, and both the specification and the structure chart are
used to write the final code. The programmer might be using the structure chart to clarify
the overall architecture of the program, and referring to the specification when coding
individual subroutines to check up on specific details of the required functionality.

The intermediate descriptions or documents that are produced in the course of
developing a piece of software are known as models. The structure chart mentioned
in Figure 1.2 is an example of a model in this sense. A model gives an abstract view of a
system, highlighting certain important aspects of its design and ignoring large amounts
of low-level detail. As a result, models are much easier to understand than the complete
code of the system and are often used to illustrate aspects of a system’s overall structure
or architecture. An example of the kind of structure that is meant is provided by the
subroutine calling structure documented in the structure chart above.

As larger and more complex systems are developed, and as the number of people
involved in the development team increases, more formality needs to be introduced into
the process. One aspect of this increased complexity is that a wider range of models is
used in the course of a development. Indeed, software design could almost be defined
as the construction of a series of models describing important aspects of the system in
more and more detail, until sufficient understanding of the requirements is gained to
enable coding to begin.

4 PRACTICAL OBJECT-ORIENTED DESIGN WITH UML

The use of models is therefore central to software design, and provides two
important benefits which help to deal with the complexity involved in developing
almost any significant piece of software. Firstly, models provide succinct descriptions
of important aspects of a system that may be too complex to be grasped as a whole.
Secondly, models provide a valuable means of communication, both between different
members of the development team, and also between the team and outsiders such as the
client. This book describes the models that are used in object-oriented design and gives
illustrations of their use.

Models of applications

Models are also used in software development to help in understanding the application
area being addressed by a system, before the stages of system design and coding are
reached. Such models are sometimes referred to as analysis models as opposed to the
design models discussed above. The two types of model can be differentiated by the
fact that unlike design models, analysis models do not make any explicit reference to
the proposed software system or its design, but aim instead to capture certain aspects
and properties of the ‘real world’.

In general terms, analysis and design models fulfil the same needs and provide the
same sorts of benefit. Both software systems and the real-world systems that they are
supporting or interacting with tend to be highly complex and very detailed. In order to
manage this complexity, descriptions of systems need to emphasize structure rather than
detail, and to provide an abstract view of the system. The exact nature of this abstract
view will depend on the purposes for which it is produced, and in general several such
views, or models, will be needed to give an adequate overall view of a system.

Characteristically, analysis models describe the data handled in an application
and the various processes by which it is manipulated. In traditional analysis methods,
these models are expressed using diagrams such as logical data models and data flow
diagrams. It is worth noticing that the use of analysis models to describe business
processes predates and is independent of the computerization of such processes. For
example, organization charts and diagrams illustrating particular production processes
have been used for a long time in commerce and industry.

Relationship between analysis and design models

It is likely that both analysis and design models, as defined above, will be produced
in the course of the development of any significant software system. This raises the
question of what relationship exists between them.

The process of system development has traditionally been divided into a number of
phases. An analysis phase, culminating in the production of a set of analysis models, is
followed by a design phase, which leads to the production of a set of design models.
In this scenario, the analysis models are intended to form the input to the design
phase, which has the task of creating structures which will support the properties and
requirements stated in the analysis models.

INTRODUCTION TO UML §

One problem with this division of labour is that very different types of language and
notation have often been used for the production of analysis and design models. This
leads to a process of translation when moving from one phase to the next. Information
contained in the analysis models must be reformulated in the notation required for the
design models.

Clearly, there is a danger that this process will be both error-prone and wasteful.
Why, it has been asked, go to the trouble of creating analysis models if they are going
to be replaced by design models for the remainder of the development process? Also,
given that notational differences exist between the two types of model, it can be difficult
to be certain that all the information contained in an analysis model has been accurately
extracted and represented in the design notation.

One promise of object-oriented technology has been to remove these problems by
using the same kinds of model and modelling concepts for both analysis and design. In
principle, the idea is that this will remove any sharp distinction between analysis and
design models. Clearly, design models will contain low-level details that are not present
in analysis models, but the hope is that the basic structure of the analysis model will be
preserved and be directly recognizable in the design model. Apart from anything else,
this might be expected to remove the problems associated with the transfer between
analysis and design notations.

A consequence of using the same modelling concepts for analysis and design is to
blur the distinction between these two phases. The original motivation behind this move
was the hope that software development could be treated as a seamless process: analysis
would identify relevant objects in the real-world system, and these would be directly
represented in software. In this view, design is basically a question of adding specific
implementation details to the underlying analysis model, which would be preserved
unchanged throughout the development process. The plausibility of this view will be
considered in more detail in Section 2.10 once the object model has been discussed in
more detail.

The purpose of this book is to explain the modelling concepts used by object-
oriented methods, and to show how models can be expressed in the notation defined
by UML. The focus of the book is on design and the use of design models in the
development of software, but the same modelling concepts apply equally well to the
production of analysis models. Analysis is a skill distinct from design, and there is much
to learn about the techniques for carrying it out effectively, but the resulting analysis
models can be perfectly well expressed using the notation presented in this book.

1.2 METHODOLOGIES

Software development, then, is not simply a case of sitting down at a terminal and typing

in the program code. In most cases the complexity of the problem to be solved requires

that intermediate development steps are taken, and that a number of abstract models of

the program structure are produced. These points apply equally well to developments
_involving only one programmer and to conventional team developments.

