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Preface

The problem as to whether or not there exists a lifting of the Mg
space') corresponding to the real line and Lebesgue measure on it was
first raised by A. Haar. It was solved in a paper published in 1931 [102]
by J. von Neumann, who established the existence of a lifting in this
case. In subsequent papers J. von Neumann and M. H. Stone [105], and
later on J. Dieudonné [22], discussed various algebraic aspects and
generalizations of the problem.

Attemps to solve the problem as to whether or not there exists a
lifting for an arbitrary Mg space were unsuccessful for a long time,
although the problem had significant connections with other branches
of mathematics.

Finally, in a paper published in 1958 [88], D. Maharam established,
by a delicate argument, that a lifting of Mg always exists (for an arbi-
trary space of o-finite mass). D. Maharam proved first the existence of
a lifting of the M} space corresponding to a product X =[] {a;,b;}

iel
and a product measure u=® y;, with p{a;}=u;{b;}=3 for all iel.
iel

Then, she reduced the general case to this one, via an isomorphism
theorem concerning homogeneous measure algebras [87], [88].

A different and more direct proof of the existence of a lifting was
subsequently given by the authors in [65]. A variant of this proof is
presented in chapter 4.

It should be noticed that it is the “positivity” of the linear lifting (or
correspondingly the “‘continuity property’’) which makes the proof of its
existence difficult. However, it is precisely this property of the lifting
which is important in applications.

The fact that there always exists a lifting (for strictly localizable
spaces) has important applications. For instance: in the representation
of integral operators, in the problem of disintegration of measures and
ergodic theory, in the existence of separable modifications for stochastic
processes and in the problem of point realizations of automorphisms

1) This notation is explained in section 7, chapter 1.
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of L% spaces?). Many classical theorems can be stated and proved in
final form using the notion of lifting.

Most of the results given in this volume are due to the authors and
were established in their papers quoted in the bibliography. The pre-
sentation makes use of various improvements in methods and results
which were obtained subsequently by the authors.

Results concerning liftings commuting with sets of mappings (for
instance the fact that if X is a locally compact group and u a left
invariant Haar measure on X, then there is always a lifting of the corre-
sponding M¥ space commuting with the left translation of X) are not
included here. Complete details can be found in [54] and [72].

The volume is divided into ten main chapters. In chapter 1 we out-
line the setting for the theory of integration that is used in the book.
The approach that we develop is based on the notion of upper integral.
It provides a unified treatment for Bourbaki’s integrals (both the usual
and the essential integral) and for the integral in the setting of abstract
measure spaces.

In chapter 2 we introduce the basic notion of admissible subalgebra
of M% and we study projections onto admissible subalgebras. Admis-
sible subalgebras are used in the proof of the existence of a lifting.

In chapter 3 we introduce the notions of lifting, linear lifting and
lower density (for an admissible subalgebra). We show in particular
that the existence of a linear lifting is equivalent with the existence of
a lifting.

The existence of a lifting (for strictly localizable spaces) is proved
in chapter 4. The proof makes use of admissible subalgebras and an
ergodic theorem concerning increasing sequences of projections (i. €. the
appropriate version of the martingale convergence theorem, which is
proved in Appendix I at the end of the volume). In view of later appli-
cations, we also show here how to define liftings for functions having
as range a completely regular space.

In chapter 5 we define and study the topologies associated with
lower densities and with liftings of an admissible subalgebra. Most of
the results of this chapter were proved in [57].

In chapter 6 we discuss the integrability and measurability of func-
tions with values in Banach spaces. The definitions and results are used
in the next chapter.

In chapter 7 we prove a general integral representation theorem
(without any separability assumptions). This theorem yields as corol-

2) For further results concerning liftings and differentiation of measures, the
reader may consult the paper [78], which appeared after the manuscript of this
volume was completed and sent for publication.
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laries the Dunford-Pettis theorem and the Dunford-Pettis-Phillips
theorem. The dual of L% (1< p< o0) is obtained without any separability
hypotheses. This chapter contains also a proof of Strassen’s integral
representation theorem, again without any separability assumptions.
Using liftings for functions having as range a completely regular space,
we give a short and direct proof of the fact that certain stochastic pro-
cesses admit separable modifications.

In chapter 8 we introduce and discuss the notion of strong lifting
and almost strong lifting, in the setting of locally compact spaces and
Radon measures. It is shown that if X is metrizable and p is a Radon
measure on X having X for support, then there is a strong lifting of the
corresponding Mg space. A series of examples in which X is not
metrizable but a strong lifting still exists, are given (if X is a locally
compact group and u a left invariant Haar measure on X, then there
exists a strong lifting). The chapter ends with a discussion of strong
and almost strong liftings in the setting of topological (non locally com-
pact) spaces. There is also an appendix on Borel liftings.

In chapter 9 we first prove a theorem about domination of meas-
ures, as a corollary to Strassen’s theorem proved in chapter 7. From
this theorem we obtain directly the disintegration of measures in the
case of compact spaces and continuous mappings. The general dis-
integration theorem is proved in the last section of the chapter. We
also show in this chapter that the existence of a strong lifting and that
of a disintegration are in a certain sense equivalent problems. Among
the notions introduced in this chapter in connection with the study
of disintegration of measures we would like to mention that of “appro-
priate family”.

In chapter 10 we show that every automorphism of an L3} space is
induced by a point mapping.

The volume ends with two appendices and a short list of open
problems (the main one, at present, being the existence of a strong
lifting).

The authors wish to thank Miss Vera Fisher for her excellent typing
of the manuscript.

During the preparation of this volume the authors were supported
by the U.S. Army Research Office (Durham, N. C.) under contract
DA-31-124-ARO(D)-288. The authors wish to extend their thanks to
Dr. A. S. Galbraith and the administrative staff of that office for their
cooperation.

Evanston, March 1969 A. Ionescu Tulcea
C. Ionescu Tulcea
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CHAPTER 1
Measure and integration

In this chapter we outline the setting for the theory of measure and
integration that will be used in this book. The approach that we develop
is essentially based on the notion of upper integral. It has the advantage
that it provides a unified treatment for Bourbaki’s integrals (both the
usual and the “essential” integral) and for the integral in abstract mea-
sure spaces. This chapter is self-contained. We give complete definitions
and complete statements of the most important results in the theory.
The proofs however are omitted in most cases.

1. The upper integral

_ Let X beaset and let R be the set of all mappings f: X—R, (here
R is the extended real line and R, ={xeR|x>0}=[0, + ]).

Definition 1. — A mapping N:RX - R, is an upper integral on X if it
satisfies the following conditions:
a) N(0)=0,
b) N(Af)=AN(f) forall feRX andall 1.>0;
©) If <} g then N(f)< Y N(g,);
n=1 n=1
d) If (f,) is an increasing sequence then N(supf,)=supN( I

If N is an upper integral on X and if for each 1<p< + o0 we define
N,:R%X >R, by the equations

N,(f)=(N(f?)"?,  feR%

then N, is an upper integral on X.
From this point, up to and including section 8, N will denote a fixed
upper integral on X.



2 I. Measure and integration

A function feR* is called N-negligible if N(|f|)=0. A set AcX
is called N-negligible if ¢ , is N-negligible.

When there is no ambiguity we shall say negligible instead of N-negligible.
We say that a property P(x) holds N-almost everywhere on a set

A< X or equivalently holds for almost every xeA with respect to N
if the set of all xeA for which P(x) is not true is N-negligible.

When there is no ambiguity we shall say almost everywhere instead of
N-almost everywhere and for almost every xeA instead of for almost every
xeA with respect to N.

We shall now point out several properties of N-negligible sets and
N-negligible functions.

(1) If 4 is negligible and B< A, then B is negligible.

(2) If (4,) is a sequence of negligible sets then UA,l and ﬂA,, are
negligible. n n

(3) A function feR* is negligible if and only if S,={x|f(x)#0}
is negligible.

(4) If feR*X and N(fl)< +oo then the set {x||f(x)=+ o} is
negligible, i.e., f is finite almost everywhere.

Let f: X—R. For each 1<p< +a0 we define N,(f) by

N,(f)=N,( /.1
We denote by #7(X,N) the set of all f: X—R for which
N,(f)<+ .
The restriction of N, to #?(X,N) will be denoted by the same symbol.
When there is no ambiguity we shall write #? instead of % P(X,N).

Theorem 1. — For each 1<p< + oo the set F? is a vector space, N, is
a seminorm on FP and F* is complete with respect to this seminorm.

From now on we shall always assume that %7 is endowed with the
topology defined by the seminorm N »> We shall call this topology the
topology of mean convergence of order p (for p=1 we call it simply the
topology of mean convergence) on #P. If A = #* then we shall usually
call topology of mean convergence of order p on A (or topology of mean
convergence if p=1) the topology induced on A4 by the topology of #?.

) If g: X >R and h: X >R coincide almost everywhere then N,(f)=N,(9)
for every 1<p< + 0.



2. The spaces #? and P (1<p< + ) 3
2. The spaces ¥* and [’ (1<p< + o)

Let now # < #'(X,N) be a set with the following properties:

(Ly) 2 is a vector space;
(Ly) If ¢eCgr(R), ¢(0)=0 and feR, then pofecR;
(L3) N(f+9)=N(f)+N(g) for feR, and geR,.")

Remark. Tt follows easily from conditions (L;) and (L,) that £ is a
Riesz space (for the usual pointwise order relation) and that %, spans
2. From (L,) we also deduce:

(C)) feZ=inf(f,1)eR;

(C,) fe# and 1<p<+o0o=|f|PeR;

(C3) # is an algebra (note that for fe# and ge® we have 4fg
=(f+¢)*~(f—g)* and use (C,) and (L,));

(Cy) Zc FP(X,N) for each 1<p< + .

Definition 2. Let 1<p<+o0. We define ¥P(X,N,&) to be the
closure of Zin F7(X,N). We define L*(X,N,R) to be the separated space
associated with £?(X,N,R).

Clearly £?(X,N,#) and I”(X,N,%) are vector spaces. The canoni-
cal mapping of £?(X,N,Z#) onto L*(X,N,#) will be denoted by f-f.
Note that if f and g belong to #?(X,N,#) then §= if and only if the
set {x|g(x)#f(x)} is N-negligible.

Recall that the norm on L*(X,N,#) (which will also be denoted by
N,) is defined by

N, (f)=N,(f)
for each feLP(X,N,g'Z).
When there is no ambiguity we shall write #7 instead of #?(X,N ,#) and
I? instead of I*(X,N,%).

Remarks. — 1) We want to stress the fact that the definition of the
space LP(X,N, ) depends essentially on the vector space R, while the
definition of the spaces #?(X, N) depends only on the upper integral.

2) A function f:X—R belongs to £?(X,N,%#) if and only if for
each ¢>0 there is f,e# such that N, (f-f)<e.

3) The completeness of #P(X,N,#) and I’(X,N,#) is a conse-
quence of their definition and the completeness of Z?(X, N). Therefore
IP(X,N,#) (1<p<+0) is a Banach space when endowed with the
norm N,

') For any ordered vector space E and set S < E we write S, ={xeS|x>0}.
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4) If feFP?(X,N) coincides almost everywhere with a function be-
longing to £?(X,N, %) then fe #*(X,N,%).In particular fe£?(X,N, %)
if f: X—>R is N-negligible.

Let A< X, f: A>R. We say that f is defined almost everywhere if
CA is negligible. If g: X — R, we say that g is equivalent with f if
g(x)= f(x) almost everywhere.

A function f with values in R, defined almost everywhere, is said
to be p-integrable (1< p< + o) with respect to (N, %) if it is equivalent
with a function ge #?(X,N,#). If p=1 then instead of l-integrable
with respect to (N,#) we shall usually say integrable with respect to
(N, ) or (N,R)-integrable.

A function f belongs therefore to Z?(X,N,#) (1<p< +0) if and
only if it is p-integrable with respect to (N,#), has for domain X and
takes values in R.

If fis a function with values in R, defined almost everywhere, we
define N,(f)=N,(g) (1<p<+o0) if g: X > R and g is equivalent with
f. If f is p-integrable with respect to (N,%#) and if geL?(X,N, %) is
equivalent with f, then we shall sometimes write f=g. We define
mean convergence of order p in the natural way for functions that are
p-integrable with respect to (N, Z).

When there is no ambiguity we shall say p-integrable instead of p-integrable
with respect to (N,#) and integrable instead of (N, #)-integrable.

From this point, up to and including section 8, # = #'(X,N) will be
a fixed set with the properties (L,), (Ly), (L3).

Several properties of the spaces #”? and LP(1<p< +o0) are given
in the theorems below:

Theorem 2. — Let & = ¥? be a set dense in £P. Then for every fe L?
there exists a sequence (f,) of functions belonging to & and having the
following properties:

2.1) The sequence (f,) converges to f in mean of order p;

2.2) The sequence (f,(x)) converges to £(x) almost everywhere;

2.3) There is g: X—>R, with N,(g)<+o such that |f,|<g for
each n.

In particular the result in Theorem 2 is valid for &=%. Moreover
if &=2 and if |f(x)|<M for all xeX, then we may suppose that
| fo(x)] <M for all xeX and all n.

The next result shows, in particular, that &7 is a Riesz space.

Theorem 3. — For each fe %, the function | f| belongs to £* and the
mapping f—|f| of &LP into £P is uniformly continuous. If fe %" and
ge PP then sup(f,g9)e £L? and inf(f,g)e L7
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For fel” and jel” we write
f <j<=f(x)<g(x) almost everywhere.

It is clear that this is an order relation in L” and that I? is a Riesz space
with respect to this order relation. Moreover the Riesz space L is
completely reticulated as follows from:

Theorem 4. — Let H < I%. be a set directed for the relation < and
such that sup N (h)<oo. Then H has a supremum hy in L* and
heH

imN ,(h,, —h)=0.

heH
For any increasing sequence (ﬁ,,) of elements in H such that supN p(ﬁ,,)

= ggg N ,(h) we have

suph,=h,, and limN,,(};oo —h,)=0.

It is cleat_that there exists an increasing sequence (ﬁ,,) of elements in H such
that supN ,(h,)= gug N,(h).
n he

Theorem 5 (Monotone convergence). — Let (f,) be an increasing se-
quence of functions belonging to £%. ; then the following two assertions
are equivalent :

i) The pointwise supremum f of (f,) is p-integrable;
ii) supN,(f,) <+ 0.

If ii) is satisfied then we have
lim N ,(f - f,)=0.
A very useful result is the following:

Theorem 6 (Lebesgue). — Let (f,) be a sequence of functions belonging
to &P with the following properties:

1) The sequence (f,(x)) converges almost everywhere to a limit
S(x)eR;

2) There is g:X—R, with N,(g)<+ oo such that for each n,
| ()| <g(x) almost everywhere.

Then the function f (defined almost everywhere) is p-integrable and
the sequence (f,) converges to f in mean of order p.

A useful characterization of #” spaces is the following:
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Theorem 7. — A function f: X — R belongs to ¥* if and only if
|fIP~ fe L.
Let now 1<p<+ o and 4 < X. It follows from Theorem 7 that
QL = @ ePLP.
We shall now close this section with the following result which is an
immediate consequence of Theorems 2 and 6:

Theorem 8. — Let 1<p<+ o0 and let pe¥? and fe ¥P. Suppose ¢
bounded. Then @fe #P.

From Theorem 8 it follows in particular that if 4 = X is a set such
that ¢, %' and if fe #? then ¢, fe L.

3. The integral

In the previous section we defined the notion of integrable function.
We shall now define the integral of an integrable function.

Definition 3. — We call integral associated with (N,R) the unique
linear mapping py 4 #—R satisfying

t,a()=N(f) for feR,
When there is no ambiguity we write y instead of py 4.

In other words, u is the linear extension of N|#, to the vector
space # spanned by the cone £, (see section 2, axiom (L;) and the
remark following it).

We remark that for each fe Z we have

lL(OISN(S).

Hence p:#2—R is a continuous linear mapping if # is endowed with
the topology of mean convergence. It follows that there exists a unique
continuous linear extension of p to #*. The value of this linear functional
for an element fe.#! is denoted by jfd,u orj" Sfduw,a)') or [fdu

and is called the integral of f. Although the main propertles of the integral
are immediate consequences of the basic properties of the upper integral
we shall point out the following:

!) When necessary we write

)f( J(x)dp(x) or )j{ S X)dpn,2)(x)-
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(1) For fe2}, [ fdu=N(f).
X
(2) For each ge&“,ljgd,u| < [lgldp.
X X
() If feL', ge L' are equivalent, then [fdu= [gdp.
X X

When A < X is such that ¢,e.%' we shall sometimes write u(A4)
instead of [ ¢, du.
X

4. Measurable functions

For each feRX we define

9,={g integrable |g>f}.

Definition 4. — We say that the upper integral N is regular if, for every
feR%,
inf{N(9)lge2,;} if 2,#+2,

N(f)={+oo if 2,-0.

From this point on we always assume that the upper integrals we consider
are regular.

We shall now introduce two important definitions.

Definition 5. — A set A < X is (N,R)-integrable if ¢ e %' (X,N,R).
We denote by By(X,N,R) the set of all (N,R)-integrable sets A < X.

Remarks. — 1) If A and B belong to %,(X,N,%) then AUB, AN B,
and A—B belong to %,(X,N,R).

2) If A< X issuchthat N(¢,)<oo then there exists Be Z,(X,N, %)
such that B> A.

In fact, let ge9D,,; then N(g)<oo. Let g, =inf(l,g). Then ¢, <gi<g, and

gie &' for all n (see Theorem 8). The sequence (g7) converges pointwise to a
characteristic function ¢, which (by Lebesgue’s theorem) belongs to #!.

When there is no ambiguity we shall say integrable instead of (N, %)-integrable
and we shall write &, instead of %,(X,N,%).

Definition 6. — A4 function f:X — R is called (N, ®)-measurable if
given any Be%By(X,N,ZR) there is a sequence (h,) of functions belonging
to X such that

limh,(x)=f(x)

N-almost everywhere on B. We denote by ZL(X,N,R) the set of all
(N, #)-measurable functions on X to R.
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From the definition it follows immediately that Z(X,N,%) is an
algebra over R and a Riesz space (for the usual pointwise order).

When there is no ambiguity we shall say measurable instead of (N, %)-measur-
able and we shall write . instead of #(X,N,%).

Aset A c X issaid to be (N, #)-measurable if ¢ 4 is (N, Z)-measurable.
We denote by #(X,N, %) the set of all (N, Z)-measurable sets 4 < X.

Proposition 1. — 4 set A< X belongs to #(X,N,R) if and only if
ANBe%By(X,N,R) for every Be B,(X,N,R).

When there is no ambiguity we shall say (as in the case of functions) measur-
able instead of (N,#)-measurable and we shall write # instead of #(X,N,%).

Proposition 2. — The set & is a tribe ( = g-algebra).

Let Ac X be (N,%)-measurable and f:A->R. We say that f is
(N, Z)-measurable if the mapping f': X —R defined by

f(x) if xeAd,

S = {o if x¢A

is (N, #)-measurable.

Remarks. — 1) Let f and g be two functions on X to R which coincide
almost everywhere on each integrable set. If f is measurable then g is
measurable.

2) Every p-integrable function (1<p< +o0) is (N,#)-measurable
(use Theorem 2). '

3) If f:X - R is measurable and K < R is a Borel set, then f~!(K)
is measurable.

To prove 3) we reason as follows. We suppose first feZ. Assume that K = R
is closed and such that K$0. There is then a sequence (¢,) of continuous func-
tions on R to R which converges pointwise to ¢x; moreover we may suppose
¢,(0)=0 for all n. Then (g,0f) converges pointwise to @xo/=¢, .\, Since
¢n0fe# for all n, we deduce that ¢, .y, is measurable. It follows then easily
that f~'(K) is measurable for every Borel set K = R.

Let now f:X—R be measurable and let K = R be closed. We shall show
that f~!(K) is measurable. For this it is enough to show that B~ f~!(K) is
measurable for every integrable set B. Let then Be%,(X,N,#) and let (h,) be
a sequence of functions in # which converges to f(x) for every xeB,, where
B, =B and B—B, is negligible. If (U,) is a sequence of open sets containing K
and such that () U,=K, then we have

Bom< nNuUn h;l(U,,))=Bomf-‘(K).
pZlm21n2m

We conclude that Bn f~!(K) is measurable. Since B was arbitrary, f~1(K) is
measurable. It follows then easily that f~!(K) is measurable for every Borel
set K< R.



