R hR at FE

80x86;L A &
it A B RN

(ZR3hR)

ION 1\,

INIRUULL

semb|y ldn(]“dqe

[

RICHARD C. DETMER
e«“‘l

Richard C. Detmer =
I A -

(%)

3 | R o
China Machine Press

80x86 i Jmi =
5it 8l R %5

(Z23ZhR)

Richard C. Detmer: Introduction to 80x86 Assembly Language and Computer Architecture

(1SBN 0-7637-1773-8).

Copyright © 2001 by Jones and Bartlett Publishers, Inc.
All rights reserved.

Original English language edition published by Jones and Bartlett Publishers, Inc. , 40 Tall Pine

Drive, Sudbury, MA 01776.

This edition is licensed for distribution and sale in the People’s Republic of China only,

excluding Hong Kong, Taiwan and Macao and may not be distributed and sold elsewhere.

AASFCRENR HiJones and Bartlett Publishers, Inc 3840 HEK .
HRAGRESREARLMEEAN (FRECESE. 8. B THE) HERT, *

SEAA S H DAY E R RBUEIIT A .

.

B

NEFA, SR,
FHEMME) e R RIS A

ABENRICES: AP 01-2004-5736
EBLERSRE (CIP) i

B0x86L MIE T S B REM (FXMR) / (%) 4B (Detmer, R. C.) ¥. -4t
PLBR Tk R #E, 2004.11

(BRI E)

4K 3X: Introduction to 80x86 Assembly Language and Computer Architecture

ISBN 7-111-15312-X

1.8 O.#- O OILKES -EXOUHEHEERZEH -XX V. OTP313

@TP303

P ERRAEBECIPEIRE T (2004) 0988778

P Tl HAR A (A AR E A EAS2S &S 100037)

HiEME: BRE
TP XEBIFRARENR - FEBEILREGHET
20044811 A 1A 58 1R ED R

787mm x 1092mm 1/16 - 32.5Ep3k
EN¥t: 0001-3 000#}
Efr: 55007 (Kx#)

WA, wmAEE. B, 6T, hAdRamiEg
FH R (010) 68326294

HHhREBINE

XEEMURE, BERKOFEEBHAMZESTERMERRE, E8FERER R EN S
MBS T BRI HARE B ERIHMNESE, EXEEGEBRRRERNAN TEZERLRKE
e X, R ARG, EENTE LA SHEFERBREFRES, iITENLERG
FVF 288 0L 2R B 5 LR BF R B BT R, BT AR 2B FE, RUER TR
RTEEE, BBRBET#¥RMBHE, BEBERULE, XAFEHEFINE, HHNEHFASEEAHR
AR .

HE, ERRERAKEN#ED T, RENTENLERBRE, &L AFHFEKRA R
BY) . XM HEHBEFTF ML EFAHEEILE, GRS MELBEMHBRRERTRKLEE
BEERE, EREGBREARRENEEE. MEARBDHIRT, EE%SEXEFERKT
BOAERRGILHEARENZBEMNEFZEBSELEZL. B, 5L —#EMEE T
BULEM BN RE RSB EFF LN AREBROBNER, 1B St REH . BiREE Wit
F—UW KR 2B

UM v R A B UG BAR AR TIRR “BRENHETRS . A19984ETT 1,
HELNARETAEARET#E., BERERIMBEM L., 23LENFRE L, RIS
Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan KaufmannZ R EZ H IR ARG BT TR
WHEEXLR, NENTBA B EE 86 98 % i Tanenbaum , Stroustrup, Kernighan, Jim
Gray F X% R —H Z8ESR, U TENRFAE" BEFHR, HieEerI. FREEE
o KEASEMBE, WEARTXENBHS B,

“HHEURZEAS” R TAESE TERMEE OR N BB, BEANERAMUERET &
HIEETE =, A7 EHBE TEERNER AT, MRS 60/E S Y 0% HESE S E
HiIfeHh, AMELTBARBHRIFELAET. €5, “HBVIB¥2AE c2ERTHEBE &
REBHEZEPRILTREM OB, HETLARRANERBHMSE HE, it —5#
IFERRITF T REMEAR,

B & 2 PHR R W5 528 MM SR BT BAL, BOE R xR ST BN Skt 978 SR A A
BWEA—DE BB B A, LEATHEMASI HHMHNNE, £ “LEHET” WARUNZT
HREAD RS BB . B BB EAE" 25, XEEDRS Sbr, N 8 IF Ry
“RMFMBE" ; R, S 2EBITNHFEHF B “Schaum’s Outlines” RIIMAMR “&% 42
HEJIRI R HTRIEX ZFA BB, RS 48T B B MEmiIms, &
BEAAEET PR, bk, WKy, B KRYE. SHK%. FETERYE.
IR WL R¥ . PRAERE, BMRETRY., BREKRY ., HEARKE . L5
B IR K JURtERE K% | Pl R, MIKER T A%, BM A%, Bt T, +EE

iv

Fis B4 2PEAES OFHNELARENMBIIBET BN NE SR ELEEHR
FHRSERE”, HRAT R A R

X ZE A R B B IR 6 RSN R A S H, P B AL ST B R AR T
PR HITEN. Ehif 28O AM. L T., Stanford, U.C. Berkeley, C. M. U. Z{tt R £ &
KERR M. MMURE TRFR. JEEN . BERE, HEIB RSN, KEE. 2K
B.ORGTR. AEE. BESNE . BHEEES RSB L% 8 TR0 IRE,
MASABHE—EHHAESRITEZ T BNFL=STEMARE ., ANEH LM RMILE
B R Al 7E3X SE 5 B8 60 2 0B RFE RIS 512 F, i o 7 LR (s Bp g
A,

WBHEE . ZRABH . —RIRE. MROER. AN RE, X R EHRIT0E
FH THRBEHMRIE, BRNGBRERERFE, MRRKELELRITADX— 445 BN E
EH B, BH AR R BRI SRS MR A, 4800 5 0O 2 W M &% AR T /RS
BUWHATHRE, RIWKERFENT . ‘

HFHE 44 . hzedu@hzbook.com
B A E: (010) 68995264

BRAMA: ARTEBXE TEREES
HRBC4R 5 . 100037

E
yF &
1
BR 4 2
B s
)
WA=

ERESERS

ALK

(HE 2k R EGF)

B
FhEF
R
&%
ok &2
48 R

O
:

WP
= 5

‘A

)

pa &

LA
* &
FRF
I ey Bf
A
LSS
£

i3

% £#4
Z &
wmAF
Flia 4%
WA
S8
A2 BT 3%

Dedicated to

my mother, Emma Langenhop Detmer Baldwin Toombs
and my uncle, Carl E. Langenhop
both of whom encouraged me to become a scholar.

A computer can be viewed from many different levels. Many people are interested only
in using applications such as word processing or games. A computer programmer, how-
ever, often sees the computer as an instrument to create new applications software. A
high-level language programmer's image of the computer is provided by the language
compiler, which gives the impression that the computer stores object types like inte-
ger, real, and array of char in named memory locations, calculates values of expres-
sions, calls procedures, executes while loops, and so forth.

However, an actual computer works at even lower levels. This book emphasizes
the architectural level, that is, the level defined by the machine instructions that the
processor can execute. Assembly-language instructions translate directly into machine-
language instructions, so that when you write an assembly-language program, you gain
an understanding of how the computer works at the machine-language level.

Although this book emphasizes the assembly-language/machine-language level
of computer operations, it also looks at other levels. For instance, it describes how high-
level language concepts such as if statements are realized at the machine level. It dis-
cusses some of the functions of the operating system. It briefly describes the logic gates
that are used at the hardware level. It also looks at how assembly language is translated
into machine language.

To program effectively at any level, programmers must understand certain fun-
damental principles at the machine level. These apply to most computer architectures.

Introduction to 80x86 Assembly Language and Computer Architecture teaches these
fundamental concepts:

* memory addressing, CPU registers and their uses

* representation of data in a computer in numeric formats and as
character strings

¢ instructions to operate on 2's complement integers

* instructions to operate on individual bits

¢ instructions to handle strings of characters

viii| Preface

¢ instructions for branching and looping
* coding of procedures: transfer of control, parameter passing, local
variables, and preserving the environment for the calling program

The primary architecture covered is the Intel 80x86 CPU family used in many
personal computers. However, almost every chapter includes information about other
architectures, or about different computer levels. Programming in assembly language
and studying related concepts in Introduction to 80x86 Assembly Language and Com-
puter Architecture prepares the student to program effectively in any programming lan-
guage, to pursue advanced studies in computer design and architecture, or to learn
more about system details for specific computers.

Text Organization and Content

Much of the material in this book is based on my previous book, Fundamentals of
Assembly Language Programming Using the IBM PC and Compatibles. While teaching
this material through the years, I have increasingly come to the conclusion that an
assembly language course is the best place to introduce computer architecture to most
students. This book reflects a stronger emphasis on architecture than on programming.
It also concentrates on general concepts as opposed to the details of a particular com-
puter system.

The minimal prerequisite for my assembly language class is a good understand-
ing of a structured high-level language. Chapters 3 through 6 and Chapter 8 form the
core of my one-semester course. I normally cover Chapters 1-8 thoroughly, Chapter 9
quickly, and then choose topics from Chapters 10-12 depending on time and resources
available. For instance, I sometimes introduce floating-point operations via in-line
assembly statements in a C++ program.

Style and Pedagogy

The text primarily teaches by example. A complete assembly-language program is pre-
sented very early, in Chapter 3, and its components are carefully examined at a level that
the student is able to understand. Subsequent chapters include many examples of assem-
bly language code along with appropriate explanations of new or difficult concepts.

The text uses numerous figures and examples. Many series of “before” and
“after” examples are given for instructions. Examples are included that illustrate the use
of a debugger. These examples give the student a stronger sense of what is happening
inside the computer.

Exercises appear at the end of each section. Short-answer exercises reinforce
understanding of the material just covered, and programming exercises offer an opportu-
nity to apply the material to assembly-language programs.

Preface

ix

Software Environment

The “standard” 80x86 assembler is Microsoft’'s Macro Assembler (MASM), version 6.11.
Although this assembler can produce code for 32-bit flat memory model programming
appropriate to a Windows 95, Windows NT, or other 32-bit Microsoft operating system
environment, the linker and debugger that come with this software package are not
suitable for use in such an environment. This book comes with a CD containing the
assembler program from MASM (ML), a more recent Microsoft linker, the 32-bit full-
. screen debugger WinDbg (also from Microsoft), and necessary supporting files. This

software package provides a good environment for producing and debugging console
applications.

The CD included with the book also contains a package designed to simplify -

input/output for the student, so that the emphasis remains on architecture rather than
operating system details. This I/O package is used extensively through most of the book.

Finally, the CD contains source code for each program that appears as a figure in the
book.

Instructor's Support

Supplementary materials for this book include an Instructor's Guide that contains some
teaching tips and solutions to many exercises. In addition, the author can be contacted
at rdetmer@mtsu.edu with questions or comments.

Acknowledgments
1 would like to thank my students who suffered through preliminary versions of this text,
often getting materials that were duplicated “just in time.” These students were very
good at catching errors. I also want to thank Hong Shi Yuan, who used a prelimfnary ver-
sion of this text in his assembly language class and who offered valuable feedback.
Many thanks to the following people who took the time to review the manu-
script: Dennis Bouvier, University of Houston-Clear Lake; Barry Fagin, US Air Force
Academy; Glynis Hamel, Worcester Polytechnic Institute; Dennis Fairclough, Utah Val-
ley State College; Thomas Higginbotham, Southeastern Louisiana University; Clifford
Nadler, Worcester Polytechnic Institute.

My wife, Carol, deserves credit for her understanding during the many hours
that I ignored her and word-processed at my computer.

Richard C. Detmer

Chapter 1

Chapter 2

Chapter 3

CONTENTS

Preface vii

Representing Data in a Computer 1

1.1 Binary and Hexadecimal Numbers 2

1.2 Character Codes 6

1.3 2's Complement Representation for Signed Integers
14 Addition and Subtraction of 2's Complement Numbers

1.5 Other Systems for Representing Numbers 21
Chapter Summary 25

Parts of a Computer System 27
2.1 PC Hardware: Memory 28
2.2 PC Hardware: The CPFU 30 _
2.3 PC Hardware: Input/Output Devices 36
24 PCSoftware 37 '
PC Software: The Operating System 37
PC Software: Text Editors 38

PC Software: Language Translators and the Linker
Chapter Summary 39

Elements of Assembly Language 41
3.1 Assembly Language Statements 42

32 A Complete Example 45

3.3 How to Assemble, Link, and Run a Program 53
34 The Assembler Listing File 60

35 Constant Operands 68

36 Instruction Operands 73

15

38

xii |

Contents

Chapter 4

Chapter 5

Chapter 6

Chapter 7

3.7 Input/Output Using Macros Defined in IOH 77
Chapter Summary 82

Basic Instructions 85

41 CopyingData 86 |

42 Integer Addition and Subtraction Instructions 95
4.3 Multiplication Instructions 108

4.4 Division Instructions 118

45 Addition and Subtraction of Larger Numbers 130

46 Something Extra: Levels of Abstraction and Microcode
Chapter Summary 134

Branching and Looping 137

5.1 Unconditional Jumps 138

5.2 Conditional Jumps, Compare Instructions,
and if Structures 144

5.3 Implementing Loop Structures 159

54 for Loops in Assembly Language 173

55 Arrays 180

56 Something Extra: Pipelining 189
Chapter Summary 190

Procedures 193

6.1 The80x86 Stack 194

6.2 Procedure Body, Call and Return 201
6.3 Parameters and Local Variables 211
6.4 Recursion 223

6.5 Other Architectures: Procedures Without a Stack 228
Chapter Summary 230

String Operations 231
7.1 Using String Instructions 232
7.2 Repeat Prefixes and More String Instructions 239
7.3 Character Translation 254
7.4 Converting a 2's Complement Integer to an
ASCII String 259

7.5 Other Architectures: CISC versus RISC Designs 264
Chapter Summary 265

133

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Contents

xiii

Bit Manipulation 267

8.1
8.2
83

8.4

Logical Operations 268

Shift and Rotate Instructions 278
Converting an ASCII String to a 2's
Complement Integer 292

The Hardware Level—Logic Gates 298

Chapter Summary 299

The Assembly Process 301

9.1
9.2
93
94
9.5

Two-Pass and One-Pass Assembly 302
80x86 Instruction Coding 307

Macro Definition and Expansion 319
Conditional Assembly 326

Macrosin IOH 333

Chapter Summary 337

Floating-Point Arithmetic 339

10.1
10.2
10.3
10.4

80x86 Floating-Point Architecture 340
Programming with Floating-Point Instructions 359
Floating-Point Emulation 374

Floating-Point and In-line Assembly 384

Chapter Summary 386

Decimal Arithmetic 387

111
11.2
113
11.4

Packed BCD Representations 388

Packed BCD Instructions 396

Unpacked BCD Representations and Instructions 404
Other Architectures: VAX Packed Decimal

Instructions 416

Chapter Summary 417

Input/Output 419

12.1
12.2
12.3

Console I/O Using the Kernel32 Library 420
Sequential File I/O Using the Kernel32 Library 428
Lower-Level Input/Output 437

Chapter Summary 439

xiv | Contents

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Index 489

Hexadecimal/ASCI Conversion 441
Useful MS-DOS Commands 443
MASM 6.11 Reserved Words 445
80x86 Instructions (by Mnemonic) 449
80x86 Instructions (by Opcode) 469

CHAPTER

1.1 Binary and
hexadecimal numbers

1.2 Character codes

1.3 2's complement
representation for
signed integers

14 Addition and
subtraction of 2's
complement numbers

1.5 Other systems for
representing numbers

'Representing Data

in a Computer

When programming in a high-level language like
Java or C++, you use variables of different types

i(such as integer, float, or character). Once you

have declared variables, you don’t have to worry
about how the data are represented in the com-
puter. When you deal with a computer at the
machine level, however, you must be more con-
cerned with how data are stored. Often you have
the job of converting data from one representa-
tion to another. This chapter covers some common
ways that data are represented in a microcom-
puter. Chapter 2 gives an overview of microcom-
puter hardware and software. Chapter 3 illustrates
how to write an assembly language program that
directly controls execution of the computer's
native instructions.

Representing Data in a Computer

1.1 Binary and Hexadecimal Numbers

A computer uses bits (binary digits, each an electronic state representing zero or one) to
denote values. We represent such binary numbers using the digits 0 and 1 and a base 2
place-value system. This binary number system is like the decimal system except that
the positions (right to left) are 1's, 2's, 4's, 8's, 16's (and higher powers of 2) instead of
1's, 10's, 100's, 1000's, 10000's (powers of 10). For example, the binary number 1101 can
be interpreted as the decimal number 13,

one 8 + one 4 + no 2 + one 1 = 13

Binary numbers are so long that they are awkward to read and write. For
instance, it takes the eight bits 11111010 to represent the decimal number 250, or the fif-
teen bits 111010100110000 to represent the decimal number 30000. The hexadecimal
(base 16) number system represents numbers using about one-fourth as many digits as
the binary system. Conversions between hexadecimal and binary are so easy that hex
can be thought of as shorthand for binary. The hexadecimal system requires sixteen dig-
its. The digits 0,1, 2, 3,4, 5,6, 7, 8, and 9 are used just as in the decimal system: A, B, C,
D, E, and F are used for the decimal numbers 10, 11, 12, 13, 14, and 15, respectively.
Either uppercase or lowercase letters can be used for the new digits.

The positions in hexadecimal numbers correspond to powers of 16. From right
to left, they are 1's, 16's, 256's, etc. The value of the hex number 9D7A is 40314 in dec-

imal since
9 X 4096 36864 [4096 = 163]
+ 13 X 256 3328 [Dis 13, 256 = 162]
+ 7 X 16 112
+ 10 X 1 10 [A is 10]
= 40314

Figure 1.1 shows small numbers expressed in decimal, hexadecimal, and binary
systems. It is worthwhile to memorize this table or to be able to construct it very quickly.
You have seen above how to convert binary or hexadecimal numbers to deci-
mal. How can you convert numbers from decimal to hex? From decimal to binary? From
binary to hex? From hex to binary? We'll show how to do these conversions manually,
but often the easiest way is to use a calculator that allows numbers to be entered in deci-

1.1 Binary and Hexadecimal Numbers

Hexadecimal

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9
10 A 1010
11 B 1011
12 c 1100
13 D 1101
14 E 1110
15 F 1111

Figure 1.1 Decimal, hexadecimal, and binary numbers

mal, hexadecimal, or binary. Conversion between bases is normally a matter of pressing
a key or two. These calculators can do arithmetic directly in binary or hex as well as dec-
imal and often have a full range of other functions available. One waming: Many of these
calculators use seven segment displays and display the lowercase letter b so that it looks
almost like the numeral 6. Other characters may also be difficult to read.

A calculator isn't needed to convert a hexadecimal number to its equivalent
binary form. In fact, many binary numbers are too long to be displayed on a typical calcu-
lator. Instead, simply substitute four bits for each hex digit. The bits are those found in
the third column of Fig. 1.1, padded with leading zeros as needed. For example,

3B8E2;, = 11 1011 1000 1110 0010,

The subscripts 16 and 2 are used to indicate the base of the system in which a number is
written; they are usually omitted when there is little chance of confusion. The extra
spaces in the binary number are just to make it more readable. Note that the rightmost

