Chemical Engineers' Handbook

FIFTH EDITION

Prepared by a staff of specialists under the editorial direction of

Robert H. Perry

Consultant

Cecil H. Chilton

Senior Advisor Battelle Memorial Institute

McGRAW-HILL BOOK COMPANY

New York St. Louis San Francisco London Düsseldorf Johannesburg Kuala Lumpur Rio de Janeiro Singapore Toronto Montreal Mexico Sydney Panama New Delhi

Library of Congress Cataloging in Publication Data

Main entry under title:

Chemical engineers' handbook.

(McGraw-Hill chemical engineering series)
First-3d ed. edited by John H. Perry; 4th ed. under
the editorial direction of Robert H. Perry, Cecil H.
Chilton and Sidney D. Kirkpatrick.

1. Chemical engineering—Handbooks, manuals, etc.

1. Perry, Pakert H. ed. H. Chilton, Cacil

I. Perry, Robert H., ed. II. Chilton, Cecil Hamilton, 1918- ed. III. Perry, John Howard, 1895-1953, ed. Chemical engineers' handbook. TP151.C52 1973 660.2'8 73-7866 ISBN 0-07-049478-9

Copyright © 1973, 1963 by McGraw-Hill, Inc. All rights reserved. Copyright renewed 1962, 1969 by Robert H. Perry. Copyright 1950, 1941, 1934 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

234567890 DODO 7654

The editors for this book were Harold B. Crawford and Ross J. Kepler, the designer was Naomi Auerbach, and its production was supervised by Stephen J. Boldish. It was set in Fototronic Laurel by York Graphic Services, Inc.

It was printed and bound by R. R. Donnelley & Sons.

List of Contributors

V. H. Abadie, M.S.M.E., Project Manager, Brown & Root, Inc. (Expansion Turbines)

Michael M. Abbott, Ph.D., Research Associate, Fluid, Chemical, and Thermal Processes Division, Rensselaer Polytechnic Institute. (Electrochemical Cells)

George E. Alves, M.S., Chemical Engineer, E.I. du Pont de Nemours & Co. (Fluid and Particle Mechanics)

Charles M. Ambler, B.S.Ch.E., Director of Chemical Engineering, Pennwalt Corp. (Centrifuges)

Robert C. Amero, B.S., Staff Engineer, Gulf Research and Development Co. (Liquid Fuels, Combustion)

William F. Ames, Professor, Department of Mechanics and Hydraulics, University of Iowa. (Mathematics)

B. O. Ayers, Ph.D., Systems Research Department, Applied Automation, Inc. (Process Control)

Eno Bagnoli, M.S., Senior Research Specialist, E.I. du Pont de Nemours & Co. (Psychrometry)

H. Carl Bauman, B.S., Manager, Administrative Services Department, American Cyanamid Co. (Cost and Profitability Estimation)

Kenneth J. Bell, Ph.D., Professor, Department of Chemical Engineering, Oklahoma State University. (Thermal Design of Heat Exchangers, Condensers, Reboilers)

Richard C. Bennett, B.S. Ch.E., Manager, Crystallizer Department, Whiting Corp. (Crystallization from Solution, Crystallization Apparatus)

Benjamin Block, M.S., Project Engineer, Abbott Laboratories. (Batch Distillation)

Donald F. Boucher, Ph.D., Chemical Engineer, E.I. du Pont de Nemours & Co. (Fluid and Particle Mechanics)

- E. T. Briddell, M.S., Senior Staff Engineer, Advanced Management Methods Department, Sun Oil Company. (Process Simulation)
- J. A. Brink, Ph.D., Development Director, Monsanto Enviro-Chem Systems, Inc. (Phase Separation)

Robert J. Brison, B.Sc., Senior Process Engineer, Parsons-Jurden Corp. (Flotation)

William J. Bronkala, B.S., Staff Consultant, Mineral Services, Inc. (Dense Media and Magnetic Separation)

C. Edward Capes, Ph.D., Associate Research Officer, National Research Council (Canada). (Size Enlargement)

Cecil H. Chilton, M.S., Senior Advisor, Battelle Memorial Institute. (Mathematical Tables)

Robert F. Conley, Ph.D., Manager of Basic Research, Georgia Kaolin Co. (Stirred and Vibratory Media Mills)

William C. Corder, M.S., Senior Research Chemical Engineer, Battelle Memorial Institute. (Sublimation)

Richard C. Corey, B.S., Senior Staff Scientist, U.S. Bureau of Mines. (Solid Fuels; Combustion)

Conrad F. Cornell, B.S.Ch.E., Assistant to Vice President, Envirotech Corp. (Gravity Sedimentation Operations)

Donald A. Dahlstrom, Ph.D., Vice President, Envirotech Corp. (Gravity Sedimentation Operations)

William P. Dyrenforth, D.E., Senior Vice-President, Carpco Research and Engineering, Inc. (Electrostatic Separation)

Robert C. Emmett, B.S.Ch.E., Senior Research Engineer, Envirotech Corp. (Gravity Sedimentation Operations)

Richard B. Engdahl, M.S., Fellow, Battelle Memorial Institute. (Solid Wastes, Air Pollution, Incinerators)

John H. Erbar, Ph.D., Professor, School of Chemical Engineering, Oklahoma State University. (Process Simulation)

Charles E. Ernst, Chief Engineer, Johns Manville Sales Corp. (Thermal Insulation)

Frank L. Evans, Jr., B.S.M.E., L.L.B., Editor, Hydrocarbon Processing, Gulf Publishing Co. (Process Machinery Drives)

J. R. Fair, Ph.D., Engineering Director, Monsanto Co. (Liquid-Gas Systems)

R. K. Finn, Ph.D., Professor, Department of Chemical Engineering, Cornell University. (Separation Processes Based Primarily on Action in a Field)

Bryant Fitch, M.S., Chief Scientist, Dorr-Oliver Inc. (Classification)

E. N. Fuller, Ph.D., Systems Research Department, Applied Automation, Inc. (Process Control)

Frank H. Fuller, M.S., Consultant, E.I. du Pont de Nemours & Co. (Air Conditioning)

W. R. Gombill, B.S.Ch.E., Research Engineer, Oak Ridge National Laboratory, Union Carbide Nuclear Co., (Prediction and Correlation of Physical Properties)

Raymond P. Genereaux, Ch.E., Chemical Engineer (Retired), E.I. du Pont de Nemours & Co. (Transport and Storage of Fluids)

W. M. Goldberger, D.Ch.E., Chief, Minerals and Metallurgical Processing, Battelle Memorial Institute. (Liquid-Liquid and Solid-Solid Systems)

Joseph B. Gray, Ph.D., Senior Consultant, E.I. du Pont de Nemours & Co. (Agitation of Low-viscosity Particle Suspensions)

C. Fred Gurnham, D. Eng. Sc., President, Gurnham and Associates, Inc. (Expression)

Joseph D. Henry, Jr., Ph.D., Assistant Professor, Department of Chemical Engineering, University of West Virginia. (Miscellaneous Separation Processes, Crystallization from the Melt)

K. C. D. Hickman, Ph.D., Technical Director, Aquastills, Inc. (Molecular Distillation)

Nevin K. Hiester, Ph.D., Director, Materials Laboratory, Stanford Research Institute. (Adsorption and Ion Exchange)

Arthur E. Hoerl, M.A., Associate Professor, Department of Statistics and Computer Science, University of Delaware. (Mathematics)

Richard L. Hoglund, M.S., Chemical Engineer, Union Carbide Corp. (Diffusional Separation Processes)

Arthur D. Holt, Consultant, The Jeffrey Manufacturing Co. (Thermal Design for Solids Processing, Heat Exchangers for Solids)

Hoyt C. Hottel, S.M., Professor Emeritus, Department of Chemical Engineering, Massachusetts Institute of Technology. (Radiation)

Stephen J. Janovac, B.S., District Sales Manager, W.S. Tyler, Inc. (Screening)

Eric Jenett, M.S.Ch.E., Manager Process Engineering, Brown & Root, Inc. (Power Recovery from Liquid Streams)

D. A. Jewett, B.S., Systems Research Department, Applied Automation, Inc. (Process Control)

A. I. Johnson, Ph.D., Dean of Engineering Science, University of Western Ontario. (Dynamic Simulation)

Victor J. Johnson, B.S., Chief, Cryogenic Technical Services, National Bureau of Standards. (Cryogenic Processes)

Louise H. Jones, Ph.D., Assistant Professor, Department of Statistics and Computer Science, University of Delaware. (Mathematics)

Brian H. Kaye, Ph.D., Professor of Physics and Director of Institute for Fine Particles Research, Laurentian University. (Particle Analysis)

Gerhard Klein, M.S., Research Engineer, Sea Water Conversion Laboratory, University of California. (Adsorption and Ion Exchange)

James G. Knudsen, Ph.D., Associate Dean of Engineering and Professor of Chemical Engineering, Oregon State University. (Heat Transmission)

D. W. Lane, Ph.D., Systems Research Department, Applied Automation, Inc. (Process Control)

A. Legsdin, M.S., Professor of Mineral Dressing, University of Missouri. (Jigging and Tabling)

Robert Lemlich, Ph.D., Professor, Department of Chemical Engineering, University of Cincinnati. (Adsorptive Bubble Separation Methods)

Norman N. Li, Sc.D., Senior Research Engineer, Esso Research and Engineering Co. (Membrane Processes)

Peter E. Liley, Ph.D., Thermophysical Properties Research Center and School of Mechanical Engineering, Purdue University. (Physical and Chemical Data)

Kuang-Hui Lin, Ph.D., Research Staff, Oak Ridge National Laboratory, Union Carbide Nuclear Co. (Reaction Kinetics, Reactor Design)

R. B. Long, Ph.D., Scientific Advisor, Esso Research and Engineering Co. (Membrane Processes)

Robert L. Lucas, B.S., Senior Consultant, E.I. du Pont de Nemours & Co. (Gas-Solids Separations)

R. N. Maddox, Ph.D., Head, Department of Chemical Engineering, Oklahoma State University. (Absorption)

Paul Y. McCormick, B.S., Consultant, E.I. du Pont de Neuman & Co. (Drying)

R. D. McCoy, Ph.D., Systems Research Department, Applied Automation Inc. (Process Control)

- John J. McKetta, Ph.D., Dean, College of Engineering, University of Texas. (Dimensional Analysis)
- Eugene J. Mexey, Ph.D., Senior Chemist, Battelle Memorial Institute. (Electric Heating)
- A. W. Michalson, B.S.Min.E., Regional Marketing Representative, Westinghouse Electric Corp. (Ion Exchange and Adsorption Equipment)
- E. C. Miller, A.B., Technical Assistant to Director of Systems Research, Applied Automation, Inc. (Process Control)
- Shelby A. Miller, Ph.D., Director of the Center for Educational Affairs, Argonne National Laboratory. (Liquid-Solid Systems)
- Elmer S. Monroe, Jr., M.M.E., Senior Consultant, E.I. du Pont de Nemours & Co. (Combustion, Fired Process Equipment)
- Eldon R. Morgan, M.S., Office Manager, Denver Equipment Division of Joy Manufacturing Co. (Solids Sampling)
- R. S. Moser, B.S., Systems Research Department, Applied Automation, Inc. (Process Control)
- B. O. Myers, Ph.D., Systems Research Department, Applied Automation Inc. (Process Control)
- Louie A. Nady, Ph.D., Chemical Engineer, Stauffer Chemical Co. (Separation Processes Based Primarily on Action in a Field, Electrophoresis)
- John Newmen, Ph.D., Professor, Department of Chemical Engineering, University of California. (Separations Based Primarily on Action in a Field, Electrochemical Theory)
- Robert W. Nolan, Senior Consultant (Retired), E. I. du Pont de Nemours & Co. (Storage and Process Vessels)
- Robert B. Norden, B.S.Ch.E., Managing Editor (Engineering), Chemical Engineering. (Materials of Construction)
- Robert W. Norris, B.S., Senior Consultant, E. I. du Pont de Nemours & Co. (Evaporative Cooling, Refrigeration)
- F. T. Ogle, Ed. M., Systems Research Department, Applied Automation, Inc. (Process Control)
- James Y. Oldshue, Ph.D., Vice President, Mixing Equipment Co. (Agitation of Low-viscosity Particle Suspensions)
- Carl R. Olson, M.S.E.E., Fellow Engineer, Westinghouse Electric Corp. (Electric Motors)
- Philip P. O'Noill, M.S., Section Supervisor, E. I. du Pont de Nemours & Co. (Pumping of Liquids and Gases)
- T. J. Pemberten, Ph.D., Systems Research Department, Applied Automation, Inc. (Process Contol)
- W. R. Penney, Ph.D., Engineering Specialist, Monsanto Co. (Gas-in-Liquid Dispersions)
- Wolfgang B. Pietsch, Ph.D., Director, Hutt Gmbh. (Compaction)
- Harold F. Parter, B.S., Principal Consultant, E. I. du Pont de Nemours & Co. (Gas-Solid Systems)
- John E. Powers, Ph.D., Professor, Department of Chemical Engineering, University of Michigan. (Crystallization from the Melt)
- R. K. Prabhudesai, Ph.D., Principal Chemical Engineer, The Coca-Cola Co. (Leaching)
- Abbott A. Putnam, B.M.E., Fellow, Battelle Memorial Institute. (Heat Transport)
- W. G. Ragains, M.S., Systems Research Department, Applied Automation, Inc. (Process Control)

- Grantges J. Raymus, M.S., M.E., Managing Consultant, Union Carbide Corp. (Handling of Bulk and Packaged Solids)
- William T. Reid, B.S., Senior Fellow (Retired), Battelle Memorial Institute. (Heat Generation and Transport)
- R. C. Richardson, Ph.D., Systems Research Department, Applied Automation, Inc. (Process Control)
- O. E. Ririe, B.S., Systems Research Department, Applied Automation, Inc. (Process Control)
- Elliot J. Roberts, Ph.D., Scientific Consultant, Dorr-Oliver Inc. (Classification)
- Lawrence A. Roe, M.S., Manager, Inorganic Research and Development, R.T. Vanderbilt Co. (Spiral Concentration)
- Frank L. Rubin, B.Ch.E., Sales Engineer, Adamson Co. (Heat-transfer Equipment)
- R. A. Sanford, B.S., Systems Research Department, Applied Automation, Inc. (Process Control)
- Adel F. Sarofim, Sc.D., Associate Professor, Department of Chemical Engineering, Massachusetts Institute of Technology. (Radiation)
- Florian Schwarzkopf, Dr. Ing., Vice-president for Product Development, Kennedy Van Saun Corp. (Fertilizer Grinding)
- Joseph Sheehan, B.S.M.E., Contract Engineer, Combustion Engineering Inc. (Pulverizers)
- I. H. Silberberg, Ph.D., Lecturer, Department of Petroleum Engineering and Assistant Director Texas Petroleum Research Committee, University of Texas. (Dimensional Analysis)
- Charles E. Silverblatt, M.S.Ch.E., Director, Industrial Processing Research and Development, Envirotech Corp. (Gravity Sedimentation Operations)
- Eugene M. Simons, Ph.D., Fellow, Battelle Memorial Institute. (Nuclear Heat Sources)
- Buford D. Smith, Ph.D., Professor, Department of Chemical Engineering, Washington University. (Distillation)
- Julian C. Smith, Ch.E., Professor, Department of Chemical Engineering, Cornell University. (Centrifuges, Selection of a Solids-Liquid Separator)
- Robert B. Smith, B.M.E., Technical Advisor, Battelle Memorial Institute. (Gaseous Fuels, Combustion)
- Richard H. Snow, Ph.D., Senior Engineer, IIT Research Institute. (Size Reduction and Size Enlargement)
- K. S. Spiegler, Ph.D., Professor, Sea Water Conversion Laboratory, University of California. (Separation Processes Based Primarily on Action in A Field)
- F. C. Standiford, M.S., President, W. L. Badger Associates, Inc. (Thermal Design of Evaporators, Evaporator Equipment)
- H. W. Staten, M.S., Systems Research Department, Applied Automation, Inc. (Process Control)
- H. Steen-Johnsen, M.S.M.E., Chief Staff Engineer, Elliott Co. (Steam Turbines)
- D. E. Steinmeyer, M.S., Engineering Specialist, Monsanto Co. (Liquid-in-Gas Dispersions)
- W. S. Stewart, Ph.D., Systems Research Department, Applied Automation, Inc. (Process Control)
- Edward H. Steymann, B.S., Associate Editor, Chemical Engineering. (Handling of Bulk and Packaged Solids)
- avid Stuhlbarg, Ch.E., Project Engineer, Procon Inc. (Thermal Design of Tank Coils, Tank vil Equipment)

David E. Stutz, B.S.E.E., Senior Engineer, Battelle Memorial Institute. (Electric Heating)

David B. Todd, Ph.D., Technical Director, Baker Perkins Inc. (Paste and Viscous-material Mixing)

E. D. Tolin, M.S., Systems Research Department, Applied Automation, Inc. (Process Control)

Robert E. Treybal, Ph.D., Chairman, Department of Chemical Engineering, University of Rhode Island. (Liquid Extraction, Liquid-Liquid Systems)

Vincent W. Uhl, Ph.D., Chairman, Department of Chemical Engineering, University of Virginia. (Agitated Vessels)

H. C. Van Ness, D.Eng., Chairman, Fluid, Chemical, and Thermal Processes Division, Rensselaer Polytechnic Institute. (Thermodynamics)

Theodore Vermeulen, Ph.D., Professor, Department of Chemical Engineering, University of California. (Adsorption and Ion Exchange Electrophoresis)

Edward Von Halle, Ph.D., Chemical Engineer, Union Carbide Corp. (Diffusional Separation Processes)

James B. Weaver, M.S., Vice President, ICI America, Inc. (Cost and Profitability Estimation)

William D. Webb, Senior Design Consultant, E.I. du Pont de Nemours & Co. (Process Plant Piping)

Sherman S. Weidenbaum, Ph.D., Research Professor, Department of Physical and Ocean Sciences, United States Coast Guard Academy. (Solid-Solid Mixing)

David F. Wells, B.S., Senior Consultant, E.I. du Pont de Nemours & Co. (Fluidized-bed Systems)

Arthur W. Westerberg, Ph.D., Assistant Professor, Department of Chemical Engineering, University of Florida. (Machine Simulation)

T. C. Wherry, B.S., Vice-President, Applied Automation, Inc. (Process Control)

Preface to the Fifth Edition

It is obvious that the practice of chemical engineering has benefited greatly from the continuing explosion of scientific and engineering knowledge. The result is not only a tremendous increase in the depth of our understanding but also a much wider geographic application of it. No longer are the benefits (and challenging problems) limited to a few industrial nations. It is now a necessity world-wide that the chemical process industries, as well as others, carry out their missions in the most efficient and economic manner possible. Conservative exploitation of the world's resources is an obligation which all professions, and especially our own, must shoulder willingly. With this in mind while revising a basic reference work, the editors have made available to the profession the latest and best information regarding design techniques and equipment performance. To do this required a complete rewriting of the Handbook. Each section has been extensively revised, and for most sections this meant starting with a completely new approach to the topic in question. A patchwork revision was not possible. This is not to say that we do not acknowledge the debts we owe to those who contributed to prior editions. It is instead a recognition that engineering practice has become more firmly based on scientific principles as opposed to depending on empirical accumulation of facts. This edition reflects this in each section. It was our intent, though, not to neglect empiricism where such data lead quickly to the most economic design. The test we have applied has been pragmatic—which approach will, now and in the immediate future, lead to sound efficient design?

An abbreviated summary of the additions and changes made in this edition follows.

SECTION-BY-SECTION SUMMARY OF CHANGES AND ADDITIONS IN THE 5TH EDITION

- Section 1. Mathematical Tables Emphasis during this revision was on incorporation of conversion to SI units, including newtons, watts, and joules as well as the more common units of length and weight. The latest accepted values of fundamental constants have been listed. A new nomograph for solving growth-rate problems is presented.
- Section 2. Mathematics New subsections have been added which describe various optimization techniques and modern computer process-simulation methods in some detail.

- Section 3. Physical and Chemical Properties Thermodynamic diagrams for the superheat region have been added for a variety of compounds, while retaining tabular data for saturation conditions. Extensive new tables are included for the transport properties of many compounds. The subsection dealing with correlation and prediction of physical properties has been thoroughly updated.
- Section 4. Thermodynamics This subsection has been completely rewritten. Thermodynamic functions for PVT systems are defined for both constant and variable composition. Solution thermodynamics and electrochemical cells are much more thoroughly treated than was the case in the fourth edition. Procedures for the evaluation of thermodynamic properties from equations of state are presented.

Reaction Kinetics and Reactor Design Extensive revision has resulted in much more emphasis upon application of fundamentals to reactor design, including interpretation of laboratory and pilot-plant data and also scale-up methods. An extensive list of references is included on a topic-by-topic basis:

- Section 5. Fluid and Particle Mechanics Thorough updating has resulted in new material on turbine meters, anemometers, and quadrant-edge flowmeters. There is an entirely new subsection on mass flowmeters. Extensive new material has been added for two-phase systems with regard to metering and flow-pattern prediction. New material on particle dynamics includes information on free-fall orientation of particles, effects of particle concentration on hindered settling, and the dynamics of liquid drops suspended in liquids.
- Section 6. Transport and Storage of Fluids New material is added for in-line vertical pumps, ANSI horizontal single-stage pumps, and vacuum systems. Non-metallic pipe and pipe linings are described. The 1972 ANSI pressure piping code is reflected in design procedures for piping systems. Vessel design has been updated to reflect ASME Code changes. Recent cost data are included for vessels as well as for pumps and compressors.
- Section 7. Solids Transport and Storage The subsection dealing with conveying bulk solids has been expanded to include new material on pneumatic and screw conveying, including sizing and cost information. The bulk-storage subsection now includes the Jenicke method of bin design which takes into account factors affecting material flow in storage vessels. New subsections on weighing and packaging solids are included, as well as new material on the transportation of solids, with dimensions given for typical highway trailers and railroad cars.
- Section 8. Size Reduction and Size Enlargement The description of the theoretical aspects of grinding has been revised. The discussion of the selection of equipment for specific applications in line with current practice and availability has been rewritten and reorganized.
- Section 9. Heat Generation and Transport Entirely new or revised tabular material for solid fuels (coal, metallurgical coke, pitch, and petroleum coke and chars) is presented. The subsection on liquid fuels has been rewritten to include a discussion of basic fuel chemistry, and there are new tabular data on physical, thermal, and chemical properties. Similarly the subsection on combustion now emphasizes up-to-date tabular and graphical data.
- Section 10. Heat Transmission This section's discussion of fundamentals has been revised, especially the subsection dealing with radiation. A detailed heat-exchanger design method has been included, and new material is presented on the processing of divided solids.
- Section 11. Heat-transfer Equipment This section now includes a new subsection on thermal insulation and another on seawater evaporators. There is new material on tube layouts. The explanation of heat exchanger codes has been updated.
- Section 12. Psychrometry, Evaporative Cooling, Air Conditioning, and Refrigeration This section no longer includes material on drying, thus permitting a more cohesive format. Extensive revision was made in the refrigeration subsection to include equipment selection guides, new data on brines, and information on steam jet refrigeration.

- Section 13. Distillation Coverage of phase equilibrium has been extended with respect to gas-phase non-ideality corrections, verification of data accuracy, and equations for prediction and correlation of activity coefficients. Short-cut design methods for continuous and batch distillation are treated in detail. Various multicomponent, multistage distillation design procedures are analyzed for effectiveness in differing situations.
- Section 14. Gas Absorption Up-to-date calculation techniques have been included for rigorous stepwise analysis of multicomponent systems accounting for heat and material balances as well as the rate of mass transfer.
- Section 15. Liquid Extraction This material is now presented in a separate section. New items include: a greatly expanded treatment of phase equilibria with tabular data for 278 ternary systems, a predictive method for equilibria utilizing activity coefficients, descriptions of double-solvent (fractional) extraction and direct-contact heat exchange between liquids, and a new and improved chart of the Kremser equation.
- Section 16. Adsorption and Ion Exchange Much of this section has been rewritten to facilitate fixed-bed design. Regenerative heat storage is treated, and multicomponent sorption is covered extensively. The underlying material on physical properties and equilibrium calculations has been thoroughly revised. Operations with other than fixed beds (batch, stage, and countercurrent) are analyzed.
- Section 17. Miscellaneous Separation Processes The crystallization subsection has been expanded to include a parallel treatment of crystallization from solution and melt. A subsection on adsorptive bubble separations, foam fractionation, and solvent sublimation has been added. The discussion of dialysis has been expanded to include liquid permeation, gas permeation, and reverse osmosis. The material on gaseous diffusion now also includes thermal, pressure, and mass diffusional separation processes. Separations based on action in an electrical field have been expanded to include electrophoresis and electromatography as well as electrodialysis.
- Section 18. Gas-Liquid Systems This section has been completely rewritten to reflect advances in the science and art of liquid-gas contactor design, and to include recent performance and cost data. Methods for sizing plate and packed towers have been updated, and the performance of newer contacting devices (such as valve trays) is analyzed. New developments in atomization, fogging, and bubble (gas-sparged) contactors have been included. Particular attention has been given to phase separation in keeping with current interest in pollution abatement.
- Section 19. Liquid-Solid Systems A subsection devoted to crystallization equipment, adsorption equipment, and selection of a solids-liquid separator has been added. The material on paste mixing and leaching equipment has been completely rewritten. Descriptions of equipment performance for agitation, ion exchange, gravity sedimentation, filtration, centrifugation, and expression have been extensively updated.
- Section 20. Gus-Solid Systems The material treating drying and fluidized solids equipment has been updated. In view of current environmental problems, a major emphasis in the section is now on particulate solids scrubbers, dust and mist collection, and electrostatic precipitators. Granular-bed gas filters are discussed, using new material.
- Section 21. Liquid-Liquid and Solid-Solid Systems For liquid-liquid systems, the treatment of agitated vessel performance has been completely rewritten to include information on droplet coalescence and formation, scale-up, and intra-stage recycle. The description of differential contact equipment now includes analysis of the effects of axial dispersion for all major equipment types. New extractors (such as Quadronics, Delaval, Treybal, Fenske-Long, Graesser) are described. For solid-solid systems, in addition to an extensive updating of performance and cost data, there are new subsections on spiral concentration and heavy media concentration.

- Section 22. Process Control This section has been rewritten to emphasize the principles of automatic control of processes rather than present a catalogue of applications. New material has been added on fundamentals, the application of computers, analysis of control problems, and the management of control projects and systems.
- Section 23. Materials of Construction The material dealing with the causes of corrosion and techniques for combating it has been completely rewritten, as has the discussion of corrosion-testing methods. Revised and new data are presented concerning the properties of materials of construction, especially those metal alloys and non-metallic materials recently introduced.
- Section 24. Process Machinery Drives This is a completely new section dealing with the selection of motors, steam and gas turbines, gas engines, expansion turbines, and liquid power-recovery turbines.
- Section 25. Cost and Profitability Estimation There is new material in this section dealing with foreign cost data and analysis. A subsection on risk analysis in the evaluation of projects has been added.

One hundred and thirty-five contributors spent several years producing the fifth edition of this Handbook. They represent many engineering and scientific disciplines and they work in a broad range of industrial, academic, and consulting institutions. The editors-in-chief believe that their efforts have produced a book which is an important contribution to the current literature of the profession and is a fitting successor to previous editions of this work. The editors-in-chief owe a great deal, if not everything, to the dedication and diligence with which contributors made their expertise available. Our thanks to them and the organizations they serve is whole-hearted and sincere. We are confident that others in our profession will join us in an appreciation of their efforts.

The untimely death of Cecil Chilton shortly before publication is a tragedy for all his professional colleagues, but perhaps more than most, I will miss his friendship and professional wisdom. To whatever extent this edition fulfills its purpose, we are in great debt to him.

Robert H. Perry

Contents

For the detailed contents of any section, consult the title page of that section. See also the alphabetical index in the back of this handbook.

	Section
Mathematical Tables Cecil H. Chilton	. 1
Mathematics Arthur E. Hoerl	. 2
Physical and Chemical Data Peter E. Liley, W. R. Gambill	. 3
Reaction Kinetics, Reactor Design, and Thermodynamics Kwang-Hui Lin, H. C. Van Ness	. 4
Fluid and Particle Dynamics D. F. Boucher	. 5
Transport and Storage of Fluids R. P. Genereaux	. 6
Solids Transport and Storage Grantges J. Raymus	. 7
Size Reduction and Size Enlargement Richard H. Snow	. 8
Heat Generation, Transport, and Storage William T. Reid	. 9
Heat Transmission James G. Knudsen	. 10
Heat-transfer Equipment Frank L. Rubin	. 11
Psychrometry, Evaporative Cooling, Air Conditioning, and Refrigeration Frank H. Fuller	. 12
Distillation Buford D. Smith	: 13
Gas Absorption Robert N. Maddox	14
Liquid Extraction Robert E. Treybal	. 15
Adsorption and Ion Exchange Theodore Vermeulen	. 16
Miscellaneous Separation Processes, J. D. Henry, Jr	. 17
Liquid-Gas Systems James R. Fair	. 18
Liquid-Solid Systems Shelby A. Miller	. 19
Gas-Solid Systems H. F. Porter	. 20
Liquid-Liquid and Solid-Solid Systems William M. Goldberger	. 21
Process Control T. C. Wherry	. 22
Materials of Construction Robert B. Norden	. 23
Process Machinery Drives Frank L. Evans	. 24
Cost and Profitability Estimation James B. Weaver	. 25

Section 1

Mathematical Tables

BY

Cecil H. Chilton, M.S., Senior Advisor, Columbus Laboratories, Battelle Memorial Institute; Member, American Institute of Chemical Engineers, American Association of Cost Engineers, American Society for Engineering Education.

MATHEMATICAL TABLES	1-13. Temperature Conversion	
-1. Five-place Common Logarithms of Numbers 1-02	1-14. Wire and Sheet-metal Gages	1-31
-2. Natural Logarithms of Numbers 1–15 -3. Values of e^x and e^{-x} 1–17	FINANCIAL AND STATISTICAL TABLES	
1-18 1-4. Natural Trigonometric Functions and Their Logarithms 1-18 1-5a. Circular Segments 1-22	1-16. Compound Interest Factors.	1-32
1-5b. Circles: Areas of Segments	Nomograph for Solving Growth-rate Problems 1-17. Single-payment Present Worth Factors for High Interest Rates	1-37
1-6. Spheres: Segments	1-18. Capital Recovery Factors for High Interest Rates	1-37
	1-19. Ordinates and Areas between Abscissa Values $-z$ and $+z$ of the Normal Distribution Curve	1-38
CONVERSION TABLES	1-20. Percentiles of the x ² Distribution	1-38
1-7. Alphabetical Listing of Common Conversions 1-24	1-21. F Distribution	1-39
1-8. Special Tables of Conversion Factors	1-22. Values of t	1-40
I-9. Kinematic-viscosity Conversion Formulas 1-27 I-10. Values of the Gas-law Constant 1-27	SIGNS AND SYMBOLS	
1-11. United States Customary System of Weights and Measures 1-27	1-23. Mathematical Signs, Symbols, and Abbreviations	1-40
1-12. Specific Gravity Conversion	1-24. Greek Alphabet	J-4()

MATHEMATICAL TABLES

Table 1-1. Five-place Common Logarithms of Numbers

100-170

No.	L	0	1	2	3	4	5	6	7	8	9	Proportional parts
100 101 102 103 104	00	000 432 860 284 703	943 475 903 326 745	087 518 945 368 787	130 561 988 410 828	173 604 •030 452 870	217 647 •072 494 912	260 689 •115 536 953	303 732 *157 578 995	346 775 •199 620 •036	309 817 •242 662 •078	44 43 42 1 4.4 4.3 4.2 2 8.8 8.6 8.4 3 13.2 12.9 12.6 4 17.6 17.2 16.8
105 106 107 108 109	02	119 531 938 342 743	160 572 979 383 782	202 612 •019 423 822	243 653 •060 463 862	284 694 *100 503 902	325 735 •141 543 941	366 776 •181 583 981	408 816 •222 623 •021	449 857 •262 663 •060	490 898 •302 703 •100	5 22.0 21.5 21.0 6 26.4 25.8 25.2 7 30.8 30.1 29.4 8 35.2 34.4 33.6 9 30.6 38.7 37.8
110 111 112 113 114	04 05	139 532 922 308 696	179 571 961 346 729	218 610 999 385 767	258 650 •038 423 805	297 689 •077 461 843	336 727 *115 500 881	376 766 •154 538 918	415 805 •192 576 956	454 844 •231 614 994	493 883 •269 652 •032	41 40 39 1 4.1 4.0 3.9 2 8.2 8.0 7.8 3 12.3 12.0 11.7 4 16.4 16.0 15.6
115 116 117 118 119	06 07	070 446 819 188 555	108 483 856 225 591	145 521 893 262 628	183 558 930 298 664	221 595 967 335 760	258 633 •004 372 737	296 670 *041 408 773	333 707 •078 •445 809	371 744 •115 482 846	408 781 •151 518 882	5 20.5 20.0 19.5 6 24.6 24.0 23.4 7 23.7 28.0 27.3 8 32.8 32.0 31.2 9 36.9 36.0 35.1
120 121 122 123 124	08	918 279 636 991 342	954 314 672 *026 377	990 350 767 *061 412	*027 386 743 *096 447	*063 422 778 *132 482	*099 458 814 *167 517	*135 493 849 *202 552	*171 529 884 *237 587	*207 565 920 *272 621	*243 600 955 *307 656	38 37 36 1 3.8 3.7 3.6 2 7.6 7.4 7.2 3 11.4 11.1 10.8 4 15.2 14.8 14.4
125 126 127 128 129	10	691 037 380 721 059	726 072 415 755 093	760 106 449 789 126	795 140 483 823 160	830 175 517 857 193	864 209 551 890 227	899 243 585 924 261	934 278 619 958 294	968 312 653 992 327	*003 346 687 *025 361	5 10.0 18.5 18.0 6 22.8 22.2 21.6 7 26.6 25.9 25.2 8 30.4 29.6 28.8 9 34.2 33.3 32.4
130 131 132 133 134	12	394 727 057 385 710	428 769 090 418 743	461 793 123 450 775	494 826 156 483 808	528 860 189 516 840	561 893 222 548 872	594 926 254 581 905	628 959 287 613 937	661 992 320 646 969	694 *024 353 678 *001	35 34 33 1 3.5 3.4 3.3 2 7.0 6.8 6.6 3 10.5 10.2 9.9 4 14.0 13.6 13.2
135 136 137 138 139	13	033 354 672 988 301	066 386 704 •019 333	098 418 735 •051 364	130 450 767 •082 395	162 481 799 •114 426	194 513 830 *145 457	226 545 862 •176 489	258 577 893 •208 520	290 609 925 •239 551	322 640 956 •270 582	4 14.0 13.6 13.2 5 17.5 17.0 16.5 6 21.0 20.4 19.8 7 24.5 23.8 23.1 8 28.0 27.2 26.4 9 31.5 30.6 29.7
140 141 142 143 144	15	613 922 229 534 836	644 953 259 564 866	675 983 290 594 897	706 *014 320 625 927	737 *045 351 655 957	768 •076 381 685 987	799 •106 412 715 •017	829 •137 442 746 •047	860 *168 473 776 *077	*198 503 806 *107	32 31 30 1 3.2 3.1 3.0 2 6.4 6.2 6.0 3 9.6 9.3 9.0
145 146 147 148 149	16	137 435 732 026 319	167 465 761 056 348	197 495 791 085 377	227 524 820 114 406	256 554 850 143 435	286 584 879 173 464	316 613 909 202 493	346 643 938 231 522	376 673 967 260 551	406 702 997 289 580	4 12.8 12.4 12.0 5 16.0 15.5 15.0 6 19.2 18.6 18.0 7 22.4 21.7 21.0 8 25.6 24.8 24.0 9 28.8 27.9 27.0
150 151 152 153 154	17	609 898 184 469 752	638 926 213 498 780	967 955 241 526 808	696 984 2 70 554 837	725 *013 299 583 865	754 *041 327 611 893	782 •070 355 639 921	811 *099 384 667 949	840 *127 412 696 977	869 *156 441 724 *005	29 28 1 2.9 2.8 2 5.8 5.6 3 8.7 8.4
155 156 157 158 159	19	033 312 590 866 140	061 340 618 893 167	089 368 645 921 194	117 396 673 948 222	145 424 700 976 249	173 451 728 •003 276	201 479 756 •030 303	229 507 783 •058 330	257 535 811 •085 358	285 562 838 •112 385	4 11.6 11.2 5 14.5 14.0 6 17.4 16.8 7 20.3 19.6 8 23.2 22.4 9 26.1 25.2
160 161 162 163 164	1	412 683 952 219 484	439 710 978 245 511	466 737 •005 272 537	493 763 *032 299 564	520 790 *059 325 590	548 817 *085 352 617	575 844 •112 378 643	602 871 •139 405 669	629 898 *165 431 696	656 925 *192 458 722	27 26 1 2.7 2.6 2 5.4 5.2 3 8.1 7.8
165 166 167 168 169	22	748 011 272 531 789	775 037 298 557 814	801 063 324 583 840	827 089 350 608 866	854 115 376 634 891	880 141 401 660 917	906 168 427 686 943	932 194 453 712 968	958 220 479 737 994	985 246 505 763 •019	4 10.8 10.4 5 13.5 13.0 6 16.2 15.6 7 18.9 18.2 8 21.6 20.8 9 24.3 23.4
170		045	070	096	121	147	172	198	7	8	9	Proportional parts
No.	. L	0	1 1	2	1 3	1 7	1 2	<u></u>				

No. L 0 1 2 3

*Indicates change in the first two decimal places.

Table 1-1. Five-place Common Logarithms of Numbers—(Continued)
170-240

										 ,		
No. 170	L 23	0 045	070	096	121	147	5 172	198	7 223	- 8 - 249	9	Proportional parts 25
171 172 173 174	24	300 553 805 055	325 578 830 080	350 603 855 105	376 629 880 130	401 654 905 155	426 679 930 180	452 704 955 204	477 729 980 229	502 754 •005 254	528 776 *030 279	1 2.5 2 5.0 3 7.5 4 10.0 5 12.5
175 176 177 178 179	25	304 551 797 042 285	329 576 822 066 310	353 601 846 091 334	378 625 871 115 358	403 650 895 139 382	428 674 920 164 406	452 699 944 188 431	477 724 969 212 455	502 748 993 237 479	527 773 *018 261 503	5 12.5 6 15.0 7 17.5 8 20.0 9 22.5
180 181 182 183 184	26	527 768 007 245 482	551 792 031 269 505	575 816 055 293 529	600 840 079 316 553	624 864 102 340 576	648 888 126 364 600	672 912 150 387 623	696 935 174 411 647	720 959 198 435 670	744 983 221 458 694	1 2.4 2 4.8 3 7.2 4 9.6 5 12.0
185 186 187 188 189	27	717 951 184 416 646	741 975 207 439 669	764 998 231 462 692	788 *021 254 485 715	811 *045 277 508 738	834 *068 300 531 761	858 *091 323 554 784	881 *114 346 577 807	905 *138 3 7 0 600 830	928 *161 393 623 853	7 16.8 8 19.2 9 21.6 23 1 2.3
190 191 192 193 194	28	875 103 330 556 780	898 126 353 578 803	921 149 375 601 825	944 172 398 623 847	967 194 421 646 870	990 217 443 668 892	*012 240 466 691 914	*035 262 488 713 937	*058 285 511 735 959	*081 308 533 758 981	2 4.6 3 6.9 4 9.2 5 11.5 6 13.8 7 16.1
195 196 197 198 199	29	003 226 447 667 885	026 248 469 688 907	048 270 491 710 929	070 292 513 732 951	092 314 535 754 973	115 336 557 776 994	137 358 579 798 •016	159 380 601 820 •038	181 403 623 842 •060	203 425 645 863 *081	8 18.4 9 20.7 22 1 2.2 2 4 4 3 6.6
200 201 202 203 204	30	103 320 535 750 963	125 341 557 771 984	146 363 578 792 •006	168 384 600 814 *027	190 406 621 835 *048	211 428 643 856 •069	233 449 664 878 •091	255 471 685 899 •112	276 492 707 920 •133	298 514 728 942 *154	8.8 5 11.0 6 13.2 7 15.4 8 17.6 9 19.8
205 206 207 208 209	31	175 387 597 806 015	197 408 618 827 035	218 429 639 848 056	239 450 660 869 077	260 471 681 690 098	281 492 702 911 118	302 513 723 931 139	323 534 744 952 160	345 555 765 973 181	366 576 785 994 201	21 1 2.1 2 4.2 3 6.3 4 8.4
210 211 212 213 214	33	222 428 634 838 041	243 449 654 858 062	263 469 675 879 082	284 490 695 899 102	305 511 715 919 122	325 531 736 940 143	346 552 756 960 163	366 572 777 980 183	387 593 797 *001 203	408 613 818 •021 224	5 10.5 6 12.6 7 14.7 8 16.8 9 18.9
215 216 217 218 219	34	244 445 646 846 044	264 465 666 866 064	284 486 686 885 084	304 506 706 905 104	325 526 726 925 124	345 546 746 945 143	365 566 766 965 163	385 586 786 985 183	405 606 806 •005 203	425 626 826 •025 223	1 2.0 2 4.0 3 6.0 4 8.0 5 10 0
220 221 222 223 224	35	242 439 635 830 025	262 459 655 850 044	282 479 674 869 064	301 498 694 889 083	321 518 713 908 102	341 537 733 928 122	361 557 753 947 141	380 577 772 967 160	400 596 792 986 180	420 616 811 *005 199	6 12.0 7 14.0 8 16.0 9 18.0 19 1 1.9
225 226 227 228 229		218 411 603 793 984	238 430 622 813 •003	257 449 641 832 •021	276 468 660 851 •040	295 488 679 870 •059	315 507 698 889 •078	334 526 717 908 •097	353 545 736 927 •116	372 564 755 946 *135	392 583 774 965 •154	3 3 8 3 5 7 4 7 6 5 9 5 6 11 4 7 13 3
230 231 232 233 234	36	173 361 549 736 922	192 380 568 754 940	211 399 586 773 959	229 418 605 791 977	248 436 624 810 996	267 455 642 829 •014	286 474 661 847 •033	305 493 680 866 •051	324 511 698 884 *070	342 530 717 903 •088	8 15.2 9 17.1 18 1 1.8 2 3.6
235 236 237 238 239	37	107 291 475 658 840	125 310 493 676 858	144 328 511 694 876	162 346 530 712 894	181 365 548 731 912	199 383 566 749 931	218 401 585 767 949	236 420 603 785 967	254 438 621 803 985	273 457 639 822 •003	3 5.4 4 7.2 5 9.0 6 10.8 7 12.6 8 14.4
240	38	021	039	057	075	093	112	130	148	166	184	9 16.2
No.	L	0	1	2	3	4	1 5	1 6	7	1 8	1 9	Proportional parts

[°] Indicates change in the first two decimal places.

1-4 MATHEMATICAL TABLES

Table 1-1. Five-place Common Logarithms of Numbers—(Continued) 240-310

	240-310											
No. 240	L 38	0 021	039	057	075	093	112	130	7	166	9	Proportional parts
241 242 243 244	36	202 382 561 739	220 359 579 757	238 417 596 775	256 435 614 792	274 453 632 810	292 471 650 828	310 489 668 846	328 507 686 863	346 525 703 881	364 543 721 899	18
245 246 247 248 249	39	917 094 270 445 620	934 111 287 463 637	952 129 305 480 655	970 146 322 498 672	987 164 340 515 690	*005 182 358 533 707	*023 199 375 550 724	*041 217 393 568 742	*058 235 410 585 759	*076 252 428 602 777	1 1.8 2 3.6 3 5.4 4 7.2 5 9.0
250 251 252 253 254	39 40	794 967 140 312 483	811 985 157 329 500	829 *002 175 346 518	846 *019 192 364 535	863 *037 209 381 552	881 *054 226 398 569	898 *071 243 415 586	*915 *088 261 432 603	933 *106 278 449 620	950 *123 295 466 637	6 10.8 7 12.6 8 14.4 9 16.2
255 256 257 258 259	41	654 824 993 162 330	671 841 *010 179 347	688 858 *027 196 364	705 875 •044 212 380	722 892 *061 229 397	739 909 •078 246 414	756 926 •095 263 430	773 943 *111 280 447	790 960 •128 296 464	807 976 *145 313 481	17 1 1.7
260 261 262 263 264	42	497 664 830 996 160	514 681 847 *012 177	531 697 863 *029 193	547 714 880 *045 210	564 731 896 •062 226	581 747 913 •078 243	597 764 929 •095 259	614 780 946 *111 275	631 797 963 •127 292	647 814 979 *144 308	2 3.4 3 5.1 4 6.8 5 8.5 6 10.2 7 11.9
265 266 267 268 269		325 488 651 815 975	341 504 667 830 991	357 521 684 846 *008	374 537 700 862 •024	390 553 716 878 *040	406 570 732 894 - *056	423 586 749 911 *072	439 602 765 927 *088	456 619 781 943 •104	472 635 797 959 •120	8 13.6 9 15.3
270 271 272 273 274	43	136 297 457 616 775	152 313 473 632 791	169 329 489 648 807	185 345 505 664 823	201 361 521 680 838	217 377 537 696 854	233 393 553 712 870	249 409 569 727 886	265 425 584 743 902	281 441 600 759 917	16 1 1.6 2 3.2 3 4.8 4 6.4 5 8.0
275 276 277 278 279	44	933 091 248 404 560	949 107 264 420 576	965 122 279 436 592	981 138 295 451 607	996 154 311 467 623	*012 170 326 483 638	*028 185 342 498 654	*044 201 358 514 669	*059 217 373 529 685	*075 232 389 545 700	4 6.4 5 8.0 6 9.6 7 11.2 8 12.8 9 14.4
280 281 282 283 284	.45	716 871 025 179 332	731 886 040 194 347	747 902 056 209 362	762 917 071 225 378	778 932 086 240 393	793 948 102 255 408	809 963 117 271 423	824 979 133 286 439	840 994 148 301 454	855 *010 163 317 469	15
285 286 287 288 289	46	484 637 788 939 000	500 652 803 954 105	515 667 818 969 120	530 682 834 984 135	545 697 849 *000 150	561 712 864 •015 165	576 728 879 •030 180	591 743 894 *045 195	606 758 909 •060 210	621 773 924 *075 225	15 1 1.5 2 3.0 3 4.5 4 6.0 5 7.5
290 291 292 293 294		240 389 538 687 835	255 404 553 702 850	270 419 568 716 864	285 434 583 731 879	300 449 598 746 894	315 464 613 761 909	330 479 627 776 923	345 494 642 790 938	359 509 657 805 953	374 523 672 820 967	6 9.0 7 10.5 8 12.0 9 13.5
295 296 297 298 299	47	982 129 276 422 567	997 144 290 436 582	*012 159 305 451 596	*026 173 319 465 611	*041 188 334 480 625	*056 202 349 494 640	*070 217 363 509 654	*085 232 378 524 669	*100 246 392 538 683	*115 261 407 553 698	14
300 301 302 303 304	47	712 857 001 144 287	727 871 015 159 302	741 886 029 173 316	756 900 044 187 330	770 914 058 202 344	784 929 073 216 359	799 943 087 230 373	813 958 101 245 387	828 972 116 259 402	842 986 130 273 416	2 2.8 3 4.2 4 5.6 5 7.0 6 8.4
305 306 307 308 309		430 572 714 855 996	444 586 728 869 •010	458 601 742 883 •024	473 615 756 897 •038	487 629 770 911 •052	501 643 785 926 *066	515 657 799 940 *080	530 671 813 954 •094	544 686 827 968 *108	558 700 841 982 •122	7 9.8 8 11.2 9 12.6
310	49	136	150	164	178	192	206	220	234	248	262	D
No.	l.	0	1	2	3	4	5	6	7	8	1 9	Proportional par

^{*}Indicates change in the first two decimal places.