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Preface

The theory of differential equations is distinguished for the wealth of
its ideas and methods. Although this richness makes the subject attrac-
tive as a field of research, it has frequently been the cause of confusion -
on the part of the student. For many students the transition from the
elementary theory of differential equations to the study of advanced
methods and techniques has beentoo abrupt. One of the chief purposes
of the present text is to fill this gap.

We present what seem to us to be the most important key ideas of the
subject in their simplest context, often that of second-order equations.
We have deliberately avoided the systematic elaboration of these key
ideas, feeling that this is often best done by the student himself. After
one has grasped the underlying methods, one of the best ways to develop
technique is to generalize (say, to higher-order equations or systems)
by one’s own efforts.

The exposition presupposes primarily a knowledge of the advanced
calculus and some experience with the formal manipulation of elemen-
tary differential equations. Beyond this, only an acquaintance with
vectors, matrices, and elementary complex functions is assumed in
most of the book. Familiarity with the concepts of pole and branch
point is assumed in Chapter 9, and in Chapter 11 Euclidean vector
spaces are used freely. '

The book falls broadly into three parts. Chapters 1 through 4 consti-
tute a review of material to which, presumably, the student has already
been exposed in elementary courses. This has a twofold purpose: to fill
the inevitable gaps in the student’s knowledge of\the beginnings of the
subject and to give a rigorous presentation of the material. The first
part covers elementary methods of integration of first-order, second-
order linear, and nth-order linear constant-coefficient differential
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equations. Besides reviewing elementary methods, it includes rigorous
daiscussions of comparison theorems and the method of majorants.
Finally, a brief introduction is given to the concepts of transfer function
and Nyquist diagram and their relation to the Laplace transform.
Although widely used in electrical engineering for many years, these
.concepts seem not to have previously found their way into textbooks
on differential equations.

Chapters 5 through 8 deal with systems of nonlinear differential
equations. Chapter 5 treats plane autonomous systems, including the
classification of nondegenerate critical points, and introduces the im-
portant notion of stability and Lizpunov’s method, which is then
applied to some of the simpler types of nonlinear oscillations. Chapter 6
includes theorems of existence, uniqueness, and continuity, both in the
small and in the large, and introduces the perturbation equations.
Chapters 7 and 8 provide.a brief survey of the theory of effective
numerical integration.

Finally, Chapteras 9 through 11 are devoted to the study of second-
order linear differential equations. Chapter 9 develops the theory of
regular singular points, with applications to some important special
functions. Chapter 10 is devoted to Sturm-Liouville theory and related
asymptotic formulas, for both finite and infinite intervals. Chapter 11
establishes the completeness of the eigenfunctions of regular Sturm-
Liouville systems, without assuming the Lebesgue integral.

Throughout the book, the properties of various important special
functions—notably Bessel fanctions, hypergeometric functions, and the
more common orthogonal polynomials—are derived from their defining
differential equations and boundary conditions, In this way we illus-
trate the theory of ordinary differential equations and show its power.

This textbeok can be used either in a one-term survey course or as a
leisurely one-year course. In a one-term course, the instructor would
normally omit starred sections. Or he might try to cover thoroughly a
selection of chapters, developing each in full, for example Chapters 1-3,
5 and 8, and 8-11—or, in & more elementary course, Chapters 1-8. '

In & year’s course, the book can be used as an introduction to more
advanced and systematic treatments, such as those found in the well-
known treatises of Cesari, Coddington and Levinson, Ince, and Nemyt-
skii and Stepanoff. Another possibility is to use the book as a continua-
tion of an elementary text on differential equations.

This text contains several hundred exercises of varying difficulty,
which in all cases should be an important part of the course. The most
difficult exercises are starred.

It is & pleasure to extend our thanks to John Barrett, Fred Brauer,
Thomas Brown, Lamberto Cesari, Abol Ghaffari, Andrew Gleason, Carl
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Langenhgp, Norman Levinson, Robert Lynch, Laurence Markus,
Frank Stewart, Feodor Theilheimer, and J. L. Walsh for their com-
ments, criticisms, and help in eliminating errors. We also thank John
Freeman, Nick Metas, Richard Moroney, David Morrison, Norton Starr,
Fred Van Vleck, John Wells, and Michael Wilber for assistance in

proofreading.

Cambridge, Massachusetts GARRETT BrkHOYF
G1AN-CARLO ROTA
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I First-Order Differential Equations

1 Introdu‘ction

A differential equation is an equation between Specified derivatives of a
function, its values, and known quantities. Many laws of physics are
most simply and naturally formulated as differential equations (or DE’s,
as we shall write for short). For this reason, DE’s have been studied by
the greatest mathematicians and mathematical physicists since the time
of Newton.

Ordinary differential equations are DE’s whose unknowns are func-
tions of a single variable; they arise most commonly in the study of
dynamic systems and electric networks. They are much easier to treat
than partial differential equations, whose unknown functions depend
on two or more independent variables.

Ordinary DE’s are classified according to their order. The order of a
DE is defined as the largest positive integer, », for which an nth deriva-
tive occurs in the equation. This Chapter will be restricted to real first-
order DE’s of the form

$x,y,y)=0. (b

Given the function ¢ of three real variables, the problem is to determine
all real functions y = f(z) which satisfy the DE, that is, all solutions of -
(1) in the following sense. '

® DEFINITION. A solution of (1)is a differentiable function f(x) such that
(x, f(x), f'(x)) = O for all x in the interval where f(x) is defined.

ExampLE 1. In the first-order DE
z+yy =0, (2)

5505497



2 First-Order Differential Equations [Ch. 1]

the function ¢ is a polynomial function #(x, y, z) = x + yz of the three
variables involved. The solutions of (2) can be found by considering the
identity d(x? +y2)/dx = 2(x +yy’). From this identity, one sees that
22 + y2=C is a constant if y = f(x) is any solution of (2). ’

The equation 22 + y2 = C defines y implicitly as a two-valued function
of z, for any positive constant C. Solving for y, we get two solutions, the
(single-valuedt) functions y = + \//C — 2, for each positive constant C.
Theé graphs of these solutions, the so-called solution curves, form two
families of semicircles, which fill the upper half-plane y > 0 and the
lower half-plane y < 0, respectively.

On the z-axis, where y = 0, the DE (2) implies that x — 0. Hence the
DE has no solutions which cross the z-axis, xcept possibly at the origin.
This fact is easily overlooked, because thé solution curves appear to
cross the z-axis to form full circles, as in Figure 1.1. However, these

Y

-

Ficure 1.1 Integral Curves of x + yy = 0.

circles have infinite slope where they cross the z-axis: hence y' does not
exist, and the DE (2) is not satisfied there.

The preceding difficulty also arisesif one tries to solve the DE (2)
for y’. Dividing through by ¥, one gets y’ = —/y, an equation which
cannot be satisfied if y = 0. The preceding difficulty is thus avoided if
one restricts attention to regions where the DE (1) is normal, in the
following sense.

w DEFINITION. 4 normal first-order DE is one of the form

y = F(x,y). (3)

t In this book, the word *‘function” will always mean single-valued function, unless the
contrary is expressly specified.



{§2] ' Fundamental theorem of the calculus 3

In the normal form y’ = —z/ of the DE (2), the function F (x, y) is
continuous in the upper half-plane y > 0 and in the lower half-plane
where y-<C 0; it is undefined on the z-axis.

2 Fundamental theorem of the calculus

The most familiar class of differential equations gonsists of the ﬁrst-
order DE’s of the form
y =g ‘ ‘ (4)
Such DE’s are normal; their solutions are described by the fundamental
theorem of the calculus, which reads as follows.

® FUNDAMENTAL THEOREM OF THE CaLcuLus. Lef the function g(x) in
DE (4) be continuous in the interval a < x < b. Given a number c, there is
one and only one solution f(x) of the DE (4) in the interval such that f(a) =
‘¢. This solution is given by the definite integral

f@=c+ gy, o= fa. (5)

This basic result serves as a model of rigorous formulation in several
respects. First, it specifies the region under consideration, as a vertical
strip a < z < b in the zy-plane. Second, it describes in precise terms the
class of functions g(x) considered. And third, it asserts the existence and
uniqueness of a solution, given the “initial condition” f(a) =e.

We recall that the definite integral

x
J gty dt = lim Lg ) Aly, Aty = te — tg-1, (5")
max A, +0
is defined for each fixed x as a limit of Riemann sums; it is not necessary
to find a formal expression for the indefinite integral [g(z) dz to glve
meaning te the definite integral [Zg(t) d¢, provided only that g(t) is
continuous. Such functions as the error functwn erf x = (2//n) [Ze-t2 dt
and the sine integral function SI(zx) = [¥[(sin t)/t]dt are indeed com-

monly defined as definite integrals; cf Chapter 3, §1,
To formulate and prove analogous theorems for more general first-
order normal DE’s, we need some technical concepts. We define a

.domaint as a nonempty open connected set. A function ¢ = (1, ..., z)
18 said to be of class " in a domain D, when all its derivatives d¢/dx,
02p/oxy éx;, - of orders 1, -+ | n exist and are continuous in D). One

writes this condition in symbols as e €nin D, or ¢ € 67(D). When $

t Some authors say region where we say domain. We will call the closure of & domain
a closed domain.
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ie merely assumed to be continuous in D one writes ¢ €€ in D, or
$ € €(D). _

~ Intervals appear so frequently in analysis that they are referred to by
a special notation. Thus, the closed interval ¢ < x < b, which is not a
domain (why not?) is denoted by [a, b], the open interval a <z <b by
(a, b), the positive semi-axis 0 < z < + 00 by [0, +00), and so on. Gen-
erally, a round bracket indicates that the endpoint adjacent to it is
excluded from the interval, and a square bracket that the adjacent
endpoint is included.

Given F(z), the notation F € €?[1, 4 c0) thus means that F is twice
continuously differentiable in the semi-infinite line [1, 4-00). Considered
as a function of the two variables = and y, F is of class €2 in the closed
domain including the vertical line z = 1 and all points to the right of it
in the zy-plane. Likewise, F € [0, 1] means that F is continuous in
the vertical strip 0 < 2 < 1. Where there is any question of just what
domain is referred to below, the domain will be described in words as
well as in symbols.

There are a number of obvious facts about the differentiability of
solutions of DE’s. Such facts about differentiability will be used without
special comment where they are irrelevant to the main idea of a proof.
For instance, if g € $*(a, b), and y =f(x) is any solution of the DE
y' =g(z), then y € ¥%+1(a, b). Again,if € ¢*and ¢ € ¥*in a domain D,
and F(u,v) € ¥™ in the entire wv-plane, then G(z,y)= F (¢(z,y),
$(z, y)) € €7(D). : :

3 Solutions and integrals

According to the definition given in §1, a solution of a DE is always a
function. For example, the solutions of the DE x + yy' = 0 in Example
1 are the functions y = 4:,/C — 22, whose graphs are semicircles of
~ arbitrary diameter, centered at the origin. The graph of the solution
curves are, however, more easily described by the equation 22 + y2 =C,
-describing a family of circles centered at the origin. In what sense can
such a family of curves be oonsidered as a solution of the DE? To
answer this question, we require a new notion.

n DnrmrrmN An integral of DE (1) is a function of two variables,

u(z, y), whick assumes a constant value whenever the variable y is replaced
by a solution y =f(z) of the DE.

In the above exa.mple, the function u(z, y) = 22 +y2 is an mtegral
of the DE = + ¥y’ = 0, because, upon replacmg the vanable y by any

function + /C —22, we obtain u(z, y) =
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The second-order' DE,
d2z s
a7 (@)
becomes a first-order DE equivalent to (2) after setting dz/dt =
dy ’
dx = —z. (2)

As we have seen, the curves u(x, y) = 22 + 2 are integrals of this DE.
When the DE (2') is interpreted as an equation of motion under
Newton'’s second law (see, for example, the discussion in Chapter 5,
§7), the integrals C = x2 + y2 represent curves of constant energy C.
This illustrates an important principle: an integral of a DE representing
some kind of motion is a quantity that remains unchanged through the
motion.
The relationship between soluttons and integrals of the DE (1) will

be made clear by the following theorem. '

» IMPLICIT FUNCTION THEOREM.T Let u(x, y) be a function of class €»
in a domain containing the point (xo, Yo), and let du(zo, yo)/dy #0. Then
there exists a unique function y = f (z, C) of class €™, defined in some open
interval (a, b) containing xo, such that yo = f(xo, C) and u(x, f(z,C)) =C
Jor all x in (a, b) and for all C in an open interval.

By the Implicit Function Theorem, every integral w(z, y) of class ¢!
of the DE (¥) defines a family of solutions near any point (z, y) where
ou(x, y)/dx # 0, obtained by solving the equation u(z, y) =C for the
variable y.

The notion of integral has been defined in terms of a solution of a
DE. For several classes of DE’s, however it is possible to verify that a
function u(x, ¥) is an integral without first finding any solution. For
example, a function u(z, y) of class ¢! is.an integral of the quasilinear
DE

¢, 9. y)=Mx,y)+ N, y)y =0
whenever

ou ou
M(x’ y)ég—/_N(x7y)%=0!
provided that du/dy # 0, as can be verified from the familiar formula

dyldx = —(0u/0x)/(8u/dy).

t Courant, Vol. 2, p. 114; Widder, p. 55. Here and below, page references to authors
refer to the books listed in the selected bibliography on pp. 3556-357.



