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Preface

Electromagnetics has become a part of the foundations of Physics and
as such is an essential ingredient of the Physics curriculum at different
levels. The present book is intended as a text-book in electromagnetics
for the B.Sc. and M.Sc. students in Physics.

The method of approach is dictated by the desire to meet the needs of
the students. Hence, the primary concern of the book is to enable the
students to obtain a satisfactory intuitive grasp of the subject and to
make them realize that the subject is relevant and useful. The basic
ideas are developed along familiar lines.

Electromagnetics is essentially mathematical in character. Without
mathematics as an aid to thought the development of electromagnetism
would have been almost impossible. However, no attempt has been
made in this book, to achieve mathematical rigour because it would be
difficult to be much more rigorous without causing the student to lose
sight of the pragmatic physical content. No more mathematical back-
ground is required of the student than the customary undergraduate
courses in Calculus and Vector analysis. More advanced techniques are
outlined as they arise.

Problems at the end of the chapters provide details for which there is
no room in the body of the text and call for additional applicatiops.
They also tend to test the students’ understanding of the concepts dis-
cussed in the chapter.

The references at the end indicate the author’s indebtedness to the
ideas of others, but the list is, by no means, exhaustive.

B.B. LAup



A Guide to Symbols

Symbal Explanation
o Polarizability of the atom
A, Molecular refractivity .
A Vector potentiai
A Four vector potential
B Magpnetic flux density
< Electric susceptibility
K Magnetic susceptibility
c Velocity of light
G Capacitance
3 Skin depth
R Kronecker delta
3(r) Dirac delta function
v A 0
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Unit vector in the direction r
Electric field strength
Electrostatic potential
Magaetic flux

Magnetic scalar potential
Force

Electromagnetic field tensor
Damping coefficient
Green’s function

Magnetic field strength
Current

Current density

Bessel’s function
Four-vector current-density
Propagation vector
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Xii A GUIDE TO SYMBOLS

*) Charge per unit length, wavelength
A Gravitational constant

L Differential operator

*L Lagrangian; Self-inductance

*10 Magnetic moment; permeability
m Magnetic dipole moment

M Mutual inductance

n Refractive index

N Poyuting vector-

*Q Solid angle; ohm

p Dipole moment;

P Macroscopic polarization density
P Magnetic pressure

P, Legendre polynomial

Py Associated Legendre.polynomial
4 Q Charge

p Charge density

*R Reflection coefficient; resistance
*g Conductivity; scattering cross-section
S, _ Surface harmonic

*r Relaxation time; torque

T Transmission coefficient

v Energy

U Four-vector velocity

V Potential

\Y Volume

w Angular frequency

W Energy

zZ, Impedance

*These symbols_ are used to represent different quantities. The context generally
makes clear which quantity is iinder discussion.
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Chapter 1

Force, Field and Energy in Electorstatics

The world around us is made up of atoms which consist of positive
and negative charges. The dominant force between atomic particles,
therefore, is electrostatic. An understanding of a few basic laws of forces
of nature can go a long way towards guiding us through the mysteries of
scieace. One such law—the electrostatic law of force—was provided
by Coulomb in 1785. Atomic reactions can be explained with great
precision by Coulomb’s Law.

1.1 Coulomb’s Law

Coulomb showed experimentally that in free space oppositely charged
bodies attract each other, while similarly charged bodies repel with a
force that varies directly as the magaitude of each charge and inversely
as the square of the distance between them, the force being directed
along the line joining the charges.

Let us describe these observations of Coulomb in a mathematical
form. We will use vector notation throughout this book. This has some
advantages:

(i) the arbitrariness associated with the choice of the coordinate systems
disappears and the physical content becomes more clear, and

(ii) the equations of electrodynamics become more concise and vivid
if written in vector notation.

If ‘I’ and ‘2’ are two parti~les
carrying charges ¢, and ¢, respec-
tively and separated by a distance
r.3 in vacuum (Fig. 1.1), then the
electric force exerted by the particle
‘1’ on the particle ‘2’ as given by F21
Coulomb’s law is Fig. 1.1

q2 F12

ie. Fy = qu‘q; = — F, (1.1)
12

where K is the constant of proportionality and F,; is the force exerted

by the particle 2’ on the pargcl?‘l’.

30136
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2 ELECTROMAGNETICS

In vector notation this can be written as

F,, = K—}gfl—: e, :K‘qfi]—[’;rm (1.2)
Ty
[Fya]

The sign of the charges decides whether the force is attractive or
repulsive. If the charges are similar (i.e. both positive or both negative),
F,, is positive and represents the force of repulsion; while if one is
positive and the other negative, F,, is negative and is the force of
attraction.

We have two alternatives for choosing the value of K and the units of
charge: either

(1) K is arbitrarily given some fixed numerical value and Eq. (1.2)
used to determine the units of charge; or

(i) the unit of charge is taken as some arbitrary value and the
constant K determined experimentally.

In the Gaussian system (CGS) distances are measured in centimetres,
mass in grams, time in seconds, force in dynes and the electrical units
are defined by assuming the constant of proportionality K to be unity
(first alternative). That is,

where e == is the unit vector along ry,.

F,, = -|(xl_lq% r,, (dynes) (1.3)
2

Thus, ths force between two unit charges separated by a distance of one
centimetre is one dyne. The unit of charge. therefore, is that cb itge
which experience: a force of | dyne when placed 1 cm from an identica!
charge. The unit of charge, thus, defined, is called the statcoulomb o;
electrostatic unit (esu).

In SI system (Systéme Internationale) of units, the distances nie
measured in metres, mass in kilograms, time in seconds, force in newtons
and the charge in coulombs (secend alternative). The constant K is then

] , . .
i and the Coulomb’s law is written as
e,

equal to

P‘l) - 1 ql‘/?

2 7 | 12
drey [y,

(newtons) (1.9

Thus, the force between two particles each carrying a charge of one
coulomb and separated by a distance of one metre, is one newton.

The factor 4= has been introduced in order to simplify the form of.
some important. relations occurring in the electromagaetic theory. In
developing the various formulae, we will bave often to deal with spherical
shapes and hence a factor 4= is bound to appear. It wili be advantageous,
therefore, to use a constant containing 4= explicitly. The constant ¢, has
the value

6 = 8.85x107!2 coulomb? pewton™! metre™? (1.5)
You will see later that this is the so-called permittivity of free space.
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Which of these two systems shall we use? One would think it best
to use CGS system as in this system K==1 and the relation connecting
the force with the charges is relatively simple. However, if we adopt this
system, the electric current will have to be measured in clumsy ‘units of
ERYBT Xl Toe amiperes. Thus, although we thought we have chosen the units
judiciously so that the constant is banished from Eq. (1.1), it appears in
a different guise in another place. Any of these systems, therefore, is as
good as the other. However, as the ordinary measuring instruments
are calibrated in S1 units, we shall use SI system in this book.

Since Coulomb’s law is based primarily on experiments, one may ask
whether the law is exactly that of inverse square? That is, if the force is
proportional to 1/rm, is n exactly equal to 2? Cavendish showed that
n=240.02. Plimpton and Lawton (1936) found that » differs from
2 by not more than one part in 10°. More recently Lamb and Ruther-
ford (1947) also confirmed from their measurements of the energy levels
of the hydrogen atom that the exponent in Coulomb’s law is correct to
one part in 10° at distances of the order of 10~ metres. Evidence from
nuclear physics has shown that the electrostatic forces vary approximately
according to the inverse square law evea at distances of the order of 10~
metres. Considering the areas of our interest, we may use the inverse
square law with compl:te confidence. - It must be mentioned here that
the logical coastruction of a consistent theory of electromagnetism that
is developed in this book is based on the laws such as the one due to
Coulomb, which are the results of experiments and as such are probably
approximate. However, these are very good approximations and lead
to the correct results.

Notice the similarity between Coulomb’s law and the Newton’s law of
gravitation

m,m,
ra

F =1y

where 4, is the gravitational constant.

It must be mentioned here that although the chargs on the electron is
extremely small, electrostatic forces are immensely strong. A comparison
between the force of attraction between two electrons due to gravitation
and the force of repulsion due to electronic charges, will give an idea
about the relative magnitudes of these forces.

Electrostatic repulsion 1 e
Gravitational attraction™ 4re, 12 A;m?
et (1.60 x 10-19)2
. —. — 9 -
= freagr X0 X e T0-11) % (9.1 X 1091}
=4.17 x 10% ( 1 =0 X 109)
4re,
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(How iQ it, then, that we normally do not notice electrostatic forces,
which are so powerful?) '

ExaMmpLE 1.1, In Rutherford’s scattering experiment gold nuclei were
bombarded with a-particles energetic enough to approach within 2 x 10-1¢
metres of the nucleus. Find the electrostatic force of repulsion experienced
by the «-particles.

The charge on the gold nucleus is ‘79 ¢’ and that on an a-particle
is 2 " where ‘¢’ is the charge on an electron.

. F=_1_X2x79xe“
" dre,” (2 x 107142

= 91.2 newtons.

1.2 Principle of Superposition

If there are mere than two particles present with charges, say, ¢,
qy:- - -» the total force on any one particie is the vector sum of forces it
experiences due to all other particles separately. This is known as the
Principle of superposition. For example, in Fig. 1.2, in which there are
three charges, force on gy is given by

1 a9 1 ¢
F=F,+ Fpy= 19 s
2+ ¥ Areolryl® 1 7 dmeg iy f1s
EIRN
\\\\ Fas \\x\
-4 Fo
el Fra~a -
a4,
Fig. 1.2

The force acting on a charge g; due to a number of other charges
present is >

1 qiq,

F)= 4me, e Tis (1.6)
Y]

Equation (1.6) is often stated in terms
of the position vectors. If r, and r;
(Fig. 1.3) are the vectors giving the
] . location of the Charges ¢, ¢,
é : respectively, Eq. (1.6) can be written as

F_,'—_—' 1 —-g‘q—l(l'j“—l';) (1.7)

dne, Ir; —r3
Y]
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The principle of superposition has facilitated considerably the mathe-
matical handling of the theory. The principle fails in nuclear interactions
and this is one of the reasons why the nuclear theory is somewhat more
troublesome than the theory of atomic interactions.

. 1.3 Electric Field

In the treatment of physical problems, the concept of a ‘feld’ is
found to be of great utility. There are as many kinds of fields as there
are types of mathematical or physical quantities that can be represented
at a point. One finds, for instance, scalar, vector and tensor ficlds in the
ordinary three dimensional space of classical physics and four di-
mensional vector fields in the four dimensional space-time domain of
relativity theory. In the study of classical electromagnetics we shall be
concerned with scalar and vector fields in three dimensions.

The space in which electrostatic forces .
act is called electrostatic field. This, . 4 )
however, is merely a qualitative descrip- q, 4P
tion of the field. How do we define it
quantitatively? Consider a system of ‘i
3

charges distributed in space (Fig. 1.4).
What is the field due to these charges

at a point P? To answer this question C.L s
we put a charge g, at P. We assume 4
the charge g, to be so small that it does Fig. 1.4

not disturb the propertiss of the field, i.e. it exerts negligible force on
the other charges. We call it a test charge. The force acting on this
charge is

. Fo1 -
Fo - 41-;;0 z |r0 _o rils(ro - rl) (1 .8)
i

where 1, is the location vector of the point P, and r; the vectors giving the
location of the other charges.

The force per unit charge experienced by the test particle at the point

of interest is
F, [\ 1 i
9 n 4re, z [rg — 13 (ro — )
f

We have assumed that ¢, does not disturb the properties of the field.
This, however, is not possible in practice. We, therefore, assume g, to
be vanishingly small and define electric field as

Lim F 1 i
E == —0- e ——— PURISE. S, J—
(o) go>0 g, 4me, z rp — r;? (® =) (1-9)
The strength of this field [E(r)| is called the electric field intensity.
From the definition of the electric field we see that if a charge gis
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placed at a point at which the field is E, the force acting on the charge is
F=qE (1.10)

The electric field E(r) is a function of position and is itself a vector.
An electric field, therefore, is a vector field. Examine carefully the
Eq. (1.9) for the field E(r). It shows that the field at a point, duc to the
distribution of several charges, is the vector sum of the fields due to all
the charges except the charge, if any, at the point under consideration.
For the calculation of the electric field, we do not consider any charge
to be at the point except the test charge. Otherwise, the contribution to
the field at the point due to the charge present there would be infinite
because of the singularity (# = 0) in the inverse square law and the
theory would be useless. The concept such as that of a ‘point’ charge is
meaningful if one accepts that measurements, in practice, are never made
closer to such a charge than the distance of the order of atomic radii.
Note that even a single electron has a finite size. However, it is often
convenient to regard a small region of charged particles as a ‘point
charge’.

If the charge is not confined to a point, but is distributed over a region
of space, it is possible to consider it as a continuous quantity and talk
about a charge density or charge per unit volume. The charge density p

is defined as
_ Lim ¢ @
"‘V—»o(v) .11

Consider, for example, the charge distribution within a hydrogen atom.
We know that the electrons are not
stationary point charges and their positions
cannot be sharply defined. It is convenient
and quite appropriate to consider the charge
on the electron to be smeared out in a cloud
around the nucleus (Fig. 1.5). If the charge
density at a point specified by the position
vector r is p(r), the charge contained in a
small volume element dr at r is p(r) dr and
Fig. 1.5 the total charge in the atom is given by

Jo(ryde = —e (1.12)
The charge density also is a function of position, but it is a scalar

quantity and its field is a scalar field.
In the case of continuous charge distribution the electric field is given by

=

E(r)-= 1 o) (r —r)

——

47“0 _W T (113)

When the chafge is distributed over surface, we talk of surface charge
density or charge per unit area ofr). In this case



