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Preface

Many authors begin their preface by confidently describing how their book
arose. We started this project so long ago, and our memories are so weak,
that we could not do this truthfully. Others begin by stating why they de-
cided to write. Thanks to Freud, we know that unconscious reasons can be
as important as conscious ones, and so this seems impossible, too. More-
over, the real question that should be addressed is why the reader should
struggle with this text.

Even that question we cannot fully answer, so instead we offer an ex-
planation for our own fascination with this subject. It offers the pleasure
of seeing many unexpected and useful conunections between two beautiful,
and apparently unrelated, parts of mathematics: algebra and graph theory.
At its lowest level, this is just the feeling of getting something for nothing.
After devoting much thought to a graph-theoretical problem, one suddenly
realizes that the question is already answered by some lonely algebraic fact.
The canonical example is the use of eigenvalue techniques to prove that cer-
tain extremal graphs cannot exist, and to constrain the parameters of those
that do. Equally unexpected, and equally welcome, is the realization that
some complicated algebraic task reduces to a question in graph theory, for
example, the classification of groups with BN pairs becomes the study of
generalized polygons.

Although the subject goes back much further, Tutte’s work was funda-
mental. His famous characterization of graphs with no perfect matchings
was proved using Pfaffians: eventually, proofs were found that avoided any
reference to algebra. but nonetheless, his original approach has proved fruit-
ful in modern work developing parallelizable algorithms for determining the
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naxliyum size of a matching in a graph. He showed that the order of the
vertex stabilizer of an arc-transitive cubic graph was at most 48. This is still
the most surprising result on the autmomorphism groups of graphs, and it
has stimulated a vast amount of work by group theorists interested in deriv-
ing analogous bounds for arc-transitive graphs with valency greater than
three. Tutte took the chromatic polynomial and gave us back the Tutte
polynomial, an important generalization that we now find is related to the
surprising developments in knot theory connected to the Jones polynomial.

But Tutte’s work is not the only significant source. Hoffman and Sin-
gleton’s study of the maximal graphs with given valency and diameter led
them to what they called Moore graphs. Although they were disappointed
in that, despite the name, Moore graphs turned out to be very rare, this
was nonetheless the occasion for introducing eigenvalue techniques into the
study of graph theory.

Moore graphs and generalized polygons led to the theory of distance-
regular graphs, first thoroughly explored by Biggs and his collaborators.
Generalized polygons were introduced by Tits in the course of his funda-
mental work on finite simple groups. The parameters of finite generalized
polygons were determined in a famous paper by Feit and Higman; this can
still be viewed as one of the key results in algebraic graph theory. Seidel also
played a major role. The details of this story are surprising: His work was
actually motivated by the study of geometric problems in general metric
spaces. This led him to the study of equidistant sets of poiuts in projective
space or, equivalently, the subject of equiangular lines. Extremal sets of
equiangular lines led in turn to regular two-graphs and strongly regular
graphs. Interest in strongly regular graphs was further stimulated when
group theorists used them to construct new finite simple groups.

We make some explanation of the philosophy that has governed our
choice of material. Our main aim has been to present and illustrate the
main tools and ideas of algebraic graph theory, with an emphasis on cur-
rent rather than classical topics. We place a strong emphasis on concrete
examples, agreeing entirely with H. Liineburg’s admonition that “...the goal
of theory is the mastering of examples.” We have made a considerable effort
to keep our treatment self-contained.

Our view of algebraic graph theory is inclusive; perhaps some readers
will be surprised by the range of topics we have treated—fractional chro-
matic number, Voronoi polyhedra, a reasonably complete introduction to
matroids, graph drawing-—to mention the most unlikely. We also find oc-
casion to discuss a large fraction of the topics discussed in standard graph
theory texts (vertex and edge connectivity, Hamilton cycles, matchings,
and colouring problems, to mention some examples). .

We turn to the more concrete task of discussing the contents of this
book. To begin, a brief summary: automorphisms and homomorphisms,
the adjacency and Laplacian matrix, and the rank polynomial.
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In the first part of the book we study the automorphisms and homomor-
phisms of graphs, particularly vertex-transitive graphs. We introduce the
necessary results on graphs and permutation groups, and take care to de-
scribe a number of interesting classes of graphs; it seems silly, for example,
to take the trouble to prove that a vertex-transitive graph with valency k
has vertex connectivity at least 2(k + 1)/3 if the reader is not already in
position to write down some classes of vertex-transitive graphs. In addition
to results on the connectivity of vertex-transitive graphs, we also present
material on matchings and Hamilton cycles.

There are a number of well-known graphs with comparatively large au-
tomorphism groups that arise in a wide range of different settings—in
particular, the Petersen graph, the Coxeter graph, Tutte’s 8-cage, and the
Hoffman-Singleton graph. We treat these famous graphs in some detail. We
also study graphs arising from projective planes and symplectic forms over
4-dimensional vector spaces. These are examples of generalized polygons,
which can be characterized as bipartite graphs with diameter d and girth
2d. Moore graphs can be defined to be graphs with diameter d and girth
2d+ 1. Tt is natural to consider these two classes in the same place, and we
do so.

We complete the first part of the book with a treatment of graph homo-
morphisms. We discuss Hedetniemi’s conjecture in some detail. and provide
an extensive treatment of cores (graphs whose endomorphisms are all au-
tomorphisms). We prove that the complement of a perfect graph is perfect.
offering a short algebraic argument due to Gasparian. We pay particu-
lar attention to the Kneser graphs, which enables us to treat fractional
chromatic number and the Erd6s-Ko-Rado theorem. We determine the
chromatic number of the Kneser graphs (using Borsuk’s theorem).

The second part of our book is concerned with matrix theory. Chapter 8
provides a course in linear algebra for graph theorists. This includes an
extensive, and perhaps nonstandard, treatment of the rank of a matrix. Fol-
lowing this we give a thorough treatment of interlacing, which provides one
of the most powerful ways of using eigenvalues to obtain graph-theoretic
information. We derive the standard bounds on the size of independent
sets, but also give bounds on the maximum number of vertices in a bi-
partite induced subgraph. We apply interlacing to establish that certain
carbon molecules, known as fullerenes, satisfy a stability criterion. We treat
strongly regular graphs and two-graphs. The main novelty here is a careful
discussion of the relation between the eigenvalues of the subconstituents
of a strongly regular graph and those of the graph itself. We use this to
study the strongly regular graphs arising as the point graphs of generalized
quadrangles, and characterize the generalized quadrangles with lines of size
three.

The least eigenvalue of the adjacency matrix of a line graph is at least
—2. We present the beautiful work of Cameron, Goethals, Shult. and Seidel.
characterizing the graphs with least eigenvalue at least —2. We follow the
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original proof, which reduces the problem to determining the generalized
quadrangles with lines of size three and also reveals a surprising and close
connection with the theory of root systems.

Finally we study the Laplacian matrix of a graph. We consider the re-
lation between the second-largest eigenvalue of the Laplacian and various
interesting graph parameters, such as edge-connectivity. We offer several
viewpoints on the relation between the eigenvectors of a graph and various
natural graph embeddings. We give a reasonably complete treatment of the
cut and flow spaces of a graph, using chip-firing games to provide a novel
approach to some aspects of this subject.

The last three chapters are devoted to the connection between graph
theory and knot theory. The most startling aspect of this is the connection
between the rank polynomial and the Jones polynomial.

For a graph theorist, the Jones polynomial is a specialization of a
straightforward generalization of the rank polynomial of a graph. The rank
polynomial is best understood in the context of matroid theory, and conse-
quently our treatment of it covers a significant part of matroid theory. We
make a determined attempt to establish the importance of this polynomial,
offering a fairly complete list of its remarkable applications in graph the-
ory {and coding theory). We present a version of Tutte’s theory of rotors,
which allows us to construct nonisomorphic 3-connected graphs with the
same rank polynomial.

After this work on the rank polynomial, it is not difficult to derive the
Jones polynomial and show that it is a useful knot invariant. In the last
chapter we treat more of the graph theory related to knot diagrams. We
characterize Gauss codes and show that certain knot theory operations are
just topological manifestations of standard results from graph theory, in
particular, the theory of circle graphs.

As already noted, our treatment is generally self-contained. We assume
familiarity with permutations, subgroups, and homomorphisms of groups.
We use the basics of the theory of symmetric matrices, but in this case we
do offer a concise treatment of the machinery. We feel that much of the
text is accessible to strong undergraduates. Our own experience is that we
can cover about three pages of material per lecture. Thus there is enough
here for a number of courses, and we feel this book could even be used for
a first course in graph theory.

The exercises range widely in difficulty. Occasionally, the notes to a
chapter provide a reference to a paper for a solution to an exercise; it
is then usually fair to assume that the exercise is at the difficult end of
the spectrum. The references at the end of each chapter are intended to
provide contact with the relevant literature, but they are not intended to
be complete.

It is more than likely that any readers familiar with algebraic graph
theory will find their favourite topics slighted; our consolation is the hope



Preface xi

that no two such readers will be able to agree on where we have sinned the
most.

Both authors are human, and therefore strongly driven by the desire to
edit, emend, and reorganize anyone else’s work. One effect of this is that
there are very few places in the text where either of us could, with any
real confidence or plausibility, blame the other for the unfortunate and
inevitable mistakes that remain. In this matter, as in others, our wives, our
friends, and our students have made strenuous attempts to point out, and
to eradicate, our deficiencies. Nonetheless, some will still show through, and
so we must now throw ourselves on our readers’ mercy. We do intend, as an
exercise in public self-flagellation, to maintain a webpage listing corrections
at bttp://quoll.uwaterloo.ca/agt/.

A number of people have read parts of various versions of this book
and offered useful comments and advice as a result. In particular, it is
a pleasure to acknowledge the help of the following: Rob Beezer, An-
thony Bonato, Dom de Caen, Reinhard Diestel, Michael Doob, Jim Geelen,
Tommy Jensen, Bruce Richter.

We finish with a special offer of thanks to Norman Biggs, whose own Al-
gebraic Graph Theory is largely responsible for our interest in this subject.

Chris Godsil Waterloo
Gordon Royle Perth
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