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PREFACE

I present in this book a wide-ranging survey of many important topics in
the theory of partial differential equations (PDE), with particular emphasis
on various modern approaches. I have made a huge number of editorial
decisions about what to keep and what to toss out, and can only claim
that this selection seems to me about right. I of course include the usual
formulas for solutions of the usual linear PDE, but also devote large amounts
of exposition to energy methods within Sobolev spaces, to the calculus of
variations, to conservation laws, etc.

My general working principles in the writing have been these:

a. PDE theory is (mostly) not restricted to two independent vari-
ables. Many texts describe PDE as if functions of the two variables (z,y)
or (z,t) were all that matter. This emphasis seems to me misleading, as
modern discoveries concerning many types of equations, both linear and
nonlinear, have allowed for the rigorous treatment of these in any number
of dimensions. I also find it unsatisfactory to “classify” partial differential
equations: this is possible in two variables, but creates the false impression
that there is some kind of general and useful classification scheme available
in general.

b. Many interesting equations are nonlinear. My view is that overall
we know too much about linear PDE and too little about nonlinear PDE. I
have accordingly introduced nonlinear concepts early in the text and have
tried hard to emphasize everywhere nonlinear analogues of the linear theory.

¢. Understanding generalized solutions is fundamental. Many of the
partial differential equations we study, especially nonlinear first-order equa-
tions, do not in general possess smooth solutions. It is therefore essential to

—
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devise some kind of proper notion of generalized or weak solution. This is
an important but subtle undertaking, and much of the hardest material in
this book concerns the uniqueness of appropriately defined weak solutions.

d. PDE theory is not a branch of functional analysis. Whereas
certain classes of equations can profitably be viewed as generating abstract
operators between Banach spaces, the insistence on an overly abstract view-
point, and consequent ignoring of deep calculus and measure theoretic esti-
mates, is ultimately limiting.

e. Notation is a nightmare. I have really tried to introduce consistent
notation, which works for all the important classes of equations studied.
This attempt is sometimes at variance with notational conventions within a
subarea.

f. Good theory is (almost) as useful as exact formulas. I incorporate
this principle into the overall organization of the text, which is subdivided
into three parts, roughly mimicking the historical development of PDE the-
ory itself. Part I concerns the search for explicit formulas for solutions, and
Part II the abandoning of this quest in favor of general theory asserting
the existence and other properties of solutions for linear equations. Part III
is the mostly modern endeavor of fashioning general theory for important
classes of nonlinear PDE.

Let me also explicitly comment here that I intend the development
within each section to be rigorous and complete (exceptions being the frankly
heuristic treatment of asymptotics in §4.5 and an occasional reference to a
research paper). This means that even locally within each chapter the topics
do not necessarily progress logically from “easy” to “hard” concepts. There
are many difficult proofs and computations early on, but as compensation
many easier ideas later. The student should certainly omit on first reading
some of the more arcane proofs.

I wish next to emphasize that this is a textbook, and not a reference
book. I have tried everywhere to present the essential ideas in the clearest
possible settings, and therefore have almost never established sharp versions
of any of the theorems. Research articles and advanced monographs, many
of them listed in the Bibliography, provide such precision and generality.
My goal has rather been to explain, as best I can, the many fundamental
ideas of the subject within fairly simple contexts.

I have greatly profited from the comments and thoughtful suggestions
of many of my colleagues, friends and students, in particular: S. Antman,
J. Bang, X. Chen, A. Chorin, M. Christ, J. Cima, P. Colella, J. Cooper,

PREFACE

M. Crandall, B. Driver, M. Feldman, M. Fitzpatrick, R. Gariepy, J. Gold-
stein, D. Gomes, O. Hald, W. Han, W. Hrusa, T. Ilmanen, I. Ishii, I. Israel
R. Jerrard, C. Jones, B. Kawohl, S. Koike, J. Lewis, T.-P. Liu, H. Lopes7
J. McLaughlin, K. Miller, J. Morford, J. Neu, M. Portilheiro, J. Ralstony
F. Rezakhanlou, W. Schlag, D. Serre, P. Souganidis, J. Strain, W. Strauss:

M. Struwe, R. Temam, B. Tvedt, J.-L. Vazquez, M. Weinstein, P. Wolfe
and Y. Zheng. ’

I especially thank Tai-Ping Liu for many years ago writing out for me
the first draft of what is now Chapter 11.

I am extremely grateful for the suggestions and lists of mistakes from
earlier drafts of this book sent to me by many readers, and I encourage others
to send me their comments, at evans@math.berkeley.edu. I have come to
realize that I must be more than slightly mad to try to write a book of
this length and complexity, but I am not yet crazy enough to think that I
have made no mistakes. I will therefore maintain a listing of errors

which come to light, and will make this accessible through the
math.berkeley.edu homepage.

Faye Y.eager at UC Berkeley has done a really magnificent job typing
and'updatmg these notes, and Jaya Nagendra heroically typed an earlier
version at the University of Maryland. My deepest thanks to both.

I have been supported by the NSF during much of the writing, most
recently under grant DMS-9424342.
LCE

August, 1997
Berkeley



Chapter 1

INTRODUCTION

1.1 Partial differential equations
1.2 Examples
1.3 Strategies for studying PDE
1.4 Overview
1.5 Problems

This chapter surveys the principal theoretical issues concerning the solv-
ing of partial differential equations.

To follow the subsequent discussion, the reader should first of all turn
to Appendix A and look over the notation presented there, particularly the
multiindex notation for partial derivatives.

1.1. PARTIAL DIFFERENTIAL EQUATIONS

A partial differential equation (PDE) is an equation involving an unknown
function of two or more variables and certain of its partial derivatives.

Using the notation explained in Appendix A, we can write out symbol-
ically a typical PDE, as follows. Fix an integer & > 1 and let U denote an
open subset of R™.

DEFINITION. An ezpression of the form
(1) F(D*u(z), D¥'u(z),..., Du(z),u(z),z) =0 (z € U)
is called a k*P-order partial differential equation, where

F:R*" xR 'x--.xR*"xRxU =R

I—II



2 1. INTRODUCTION

is given, and
u:U—->R

1s the unknouwn.

We solve the PDE if we find all u verifying (1), possibly only among those
functions satisfying certain auxiliary boundary conditions on some part T’
of U. By finding the solutions we mean, ideally, obtaining simple, explicit
solutions, or, failing that, deducing the existence and other properties of
solutions.

DEFINITIONS.
(i) The partial differential equation (1) is called linear if it has the form

Z ao(z)D%u = f(z)
lal<k
for given functions aq (|a| < k), f. This linear PDE is homogeneous
if f=0.
(i) The PDE (1) is semilinear if it has the form
E ao(z)D*u + ag(D*1u,..., Du,u,z) = 0.
|o|=k
(iii) The PDE (1) is quasilinear if it has the form
Z ao(D* ..., Du,u,z)D% + ao(D* ', ..., Du,u,z) = 0.
lo|=k
(iv) The PDE (1) is fully nonlinear if it depends nonlinearly upon the
highest order derivatives.

A system of partial differential equations is, informally speaking, a col-
lection of several PDE for several unknown functions.
DEFINITION. An expression of the form
(2) F(D*u(z), D* 'u(z),..., Du(z),u(z),z) =0 (z€U)
is called o k*"-order system of partial differential equations, where

F:R™ xR™ ' x...x R"™ x R™ x U - R™
is given and
u:U—R™ u=(ul,...,u™)

is the unknown.

Here we are supposing that the system comprises the same number m
of scalar equations as unknowns (u!,...,u™). This is the most common

circumstance, although other systems may have fewer or more equations
than unknowns.

Systems are classified in the obvious way as being linear, semilinear, etc.

1.2. EXAMPLES 3

Remark. We use “PDE” as an abbreviation for both “partial differential
equation” and “partial differential equations”. a

1.2. EXAMPLES

There is no general theory known concerning the solvability of all partial
differential equations. Such a theory is extremely unlikely to exist, given
the rich variety of physical, geometric, and probabilistic' phenomena which
can be modeled by PDE. Instead, research focuses on various particular
partial differential equations that are important for applications within and
outside of mathematics, with the hope that insight from the origins of these
PDE can give clues as to their solutions.

Following is a list of many specific partial differential equations of in-
terest in current research. This listing is intended merely to familiarize the
reader with the names and forms of various famous PDE. To display most
clearly the mathematical structure of these equations, we have mostly set
relevant physical constants to unity. We will later discuss the origin and
interpretation of many of these PDE.

Throughout = € U, where U is an open subset of R, and t > 0. Also
Du = D;u = (ugy,...,uUz,) denotes the gradient of u with respect to the
spatial variable z = (z1,...,Z).

1.2.1. Single partial differential equations.
a. Linear equations.
1. Laplace’s equation
n
Au = Z Uz,z, = 0.
i=1
2. Helmholtz’s (or eigenvalue) equation
—Au = u.

3. Linear transport equation

n
U + Z biuz:. =0.

=1

4. Liouville’s equation

n

u— Y (b'u)z, =0.

i=1
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5. Heat (or diffusion) eguation

u —Au=0.
6. Schradinger’s equation

jup + Au=0.

7. Kolmogorov’s equation

n n
uy — }: oMuzz; + Zb'“z.- =0.
i=1

hj=1

8. Fokker-Planck equation

U — Z (07u)ziz; — Z(biu)zi =0

i,j=1 =1

9. Wave equation
ug — Au=0.

10. Telegraph equation

ug + dug — Uzz = 0.

11. General wave equation

n n
i _
Uyt — E a9z, + E bug, =0.
i=1

i,j=1
12. Airy’s equation

g + trzz = 0.
13. Beam equation

Ut + Urzrzr = 0.
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b. Nonlinear equations.

1. FEikonal equation
|Du| = 1.

[

. Nonlinear Poisson equation

—Au = f(u).
3. p-Laplacian equation
div(|DulP~2Du) = 0.

4. Minimal surface equation

. Du
v (2 D) =°
5. Monge-Ampére equation
det(D%u) = f.
6. Hamilton-Jacobi equation
w + H(Du,z) = 0.
7. Scalar conservation law
uy +divF(u) = 0.
8. Inviscid Burgers’ equation
ug + uuz = 0.
9. Scalar reaction-diffusion equation
ur — Au = f(u).
10. Porous medium equation
u — Au’)=0.
11. Nonlinear wave equations

ug — Au = flu),
uy — diva(Du) = 0.

12. Korteweg-de Vries (KdV) equation

ue + Uz + Uzzz = 0.
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1.2.2. Systems of partial differential equations.
a. Linear systems.

1. Equilibrium equations of linear elasticity

pAu + (A + p)D(diva) = 0.

2. Evolution equations of linear elasticity
ug — pAu — (A + p)D(divu) = 0.

3. Mazwell’s equations

E;:=curlB
B; = —curlE
divB =divE = 0.

b. Nonlinear systems.
1. System of conservation laws

u; + divF(u) = 0.

2. Reaction-diffusion system

u; — Au = f(u).

3. Euler’s equations for incompressible, inviscid flow

w+u-Du=-Dp
divu=0.

4. Navier-Stokes equations for incompressible, viscous flow
w+u-Du—-Au=-Dp
divu=0.

See Zwillinger [ZW] for a much more extensive listing of interesting
PDE.
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1.3. STRATEGIES FOR STUDYING PDE

As explained in §1.1 our goal is the discovery of ways to solve partial differ-
ential equations of various sorts, but—as should now be clear in view of the
many diverse examples set forth in §1.2—this is no easy task. And indeed
the very question of what it means to “solve” a given PDE can be subtle,
depending in large part on the particular structure of the problem at hand.

1.3.1. Well-posed problems, classical solutions.

The informal notion of a well-posed problem captures many of the desir-
able features of what it means to solve a PDE. We say that a given problem
for a partial differential equation is well-posed if

(a) the problem in fact has a solution;
(b) this solution is unique;

and
(c) the solution depends continuously on the data given in the problem.

The last condition is particularly important for problems arising from
physical applications: we would prefer that our (unique) solution changes
only a little when the conditions specifying the problem change a little. (For
many problems, on the other hand, uniqueness is not to be expected. In
these cases the primary mathematical tasks are to classify and characterize
the solutions.)

Now clearly it would be desirable to “solve” PDE in such a way that
(a)-(c) hold. But notice that we still have not carefully defined what we
mean by a “solution”. Should we ask, for example, that a “solution” u must
be real analytic or at least infinitely differentiable? This might be desirable,
but perhaps we are asking too much. Maybe it would be wiser to require a
solution of a PDE of order k to be at least k times continuously differentiable.
Then at least all the derivatives which appear in the statement of the PDE
will exist and be continuous, although maybe certain higher derivatives will
not exist. Let us informally call a solution with this much smoothness a
classical solution of the PDE: this is certainly the most obvious notion of
solution.

So by solving a partial differential equation in the classical sense we mean
if possible to write down a formula for a classical solution satisfying (a)—(c)
above, or at least to show such a solution exists, and to deduce various of
its properties.

1.3.2. Weak solutions and regularity.

But can we achieve this? The answer is that certain specific partial
differential equations (e.g. Laplace’s equation) can be solved in the classical
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sense, but many others, if not most others, cannot. Consider for instance
the scalar conservation law

up +F(u),, =0.

We will see in §3.4 that this PDE governs various one-dimensional phenom-
ena involving fluid dynamics, and in particular models the formation and
propagation of shock waves. Now a shock wave is a curve of discontinuity
of the solution u; and so if we wish to study conservation laws, and recover
the underlying physics, we must surely allow for solutions u which are not
continuously differentiable or even continuous. In general, as we shall see,
the conservation law has no classical solutions, but is well-posed if we allow
for properly defined generalized or weak solutions.

This is all to say that we may be forced by the structure of the par-
ticular equation to abandon the search for smooth, classical solutions. We
must instead, while still hoping to achieve the well-posedness conditions (a)-
(c), investigate a wider class of candidates for solutions. And in fact, even
for those PDE which turn out to be classically solvable, it is often most
expedient initially to search for some appropriate kind of weak solution.

The point is this: if from the outset we demand that our solutions be very
regular, say k-times continuously differentiable, then we are usually going
to have a really hard time finding them, as our proofs must then necessarily
include possibly intricate demonstrations that the functions we are building
are in fact smooth enough. A far more reasonable strategy is to consider as
separate the ezistence and the smoothness (or regularity) problems. The idea
is to define for a given PDE a reasonably wide notion of a weak solution, with
the expectation that since we are not asking too much by way of smoothness
of this weak solution, it may be easier to establish its existence, uniqueness,
and continuous dependence on the given data. Thus, to repeat, it is often
wise to aim at proving well-posedness in some appropriate class of weak or
generalized solutions.

Now, as noted above, for various partial differential equations this is
the best that can be done. For other equations we can hope that our weak
solution may turn out after all to be smooth enough to qualify as a classical
solution. This leads to the question of regularity of weak solutions. As we
will see, it is often the case that the existence of weak solutions depends
upon rather simple estimates plus ideas of functional analysis, whereas the
regularity of the weak solutions, when true, usually rests upon many intricate
calculus estimates.

Let me explicitly note here that once we are past Part I (Chapters 2-4),
our efforts will be largely devoted to proving mathematically the existence
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of solutions to various sorts of partial differential equations, and not so much
to deriving formulas for these solutions. This may seem wasted or misguided
effort, but in fact mathematicians are like theologians: we regard existence
as the prime attribute of what we study. But unlike most theologians, we
need not always rely upon faith alone.

1.3.3. Typical difficulties.

Following are some vague but general principles, which may be useful to
keep in mind:

(1) Nonlinear equations are more difficult than linear equations; and,
indeed, the more the nonlinearity affects the higher derivatives, the
more difficult the PDE is.

(2) Higher-order PDE are more difficult than lower-order PDE.

(3) Systems are harder than single equations.

(4) Partial differential equations entailing many independent variables
are harder than PDE entailing few independent variables.

(5) For most partial differential equations it is not possible to write out
explicit formulas for solutions.

None of these assertions is without important exceptions.

1.4. OVERVIEW
This textbook is divided into three major Parts.

PART I: Representation Formulas for Solutions

Here we identify those important partial differential equations for which
in certain circumstances explicit or more-or-less explicit formulas can be had
for solutions. The general progression of the exposition is from direct formu-
las for certain linear equations, to far less concrete representation formulas,
of a sort, for various nonlinear PDE.

Chapter 2 is a detailed study of four exactly solvable partial differen-
tial equations: the linear transport equation, Laplace’s equation, the heat
equation, and the wave equation. These PDE, which serve as archetypes for
the more complicated equations introduced later, admit directly computable
solutions, at least in the case that there is no domain whose boundary geom-
etry complicates matters. The explicit formulas are augmented by various
indirect, but easy and attractive, “energy”-type arguments, which serve as
motivation for the developments in Chapters 6, 7 and thereafter.

Chapter 3 continues the theme of searching for explicit formulas, now
for general first-order nonlinear PDE. The key insight is that such PDE
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can, locally at least, be transformed into systems of ordinary differential
equations (ODE), the characteristic equations. ‘We stipulate that once the
problem becomes “only” the question of integrating a system of ODE, it
is in principle solved, sometimes quite explicitly. The derivation of the
characteristic equations given in the text is very simple and does not require
any geometric insights. It is in truth so easy to derive the characteristic
equations that no real purpose is had by dealing with the quasilinear case
first.

We introduce also the Hopf-Lax formula for Hamilton-Jacobi equa-
tions (§3.3) and the Lax-Oleinik formula for scalar conservation laws (§3.4).
(Some knowledge of measure theory is useful here, but is not essential.)
These sections provide an early acquaintance with the global theory of these
important nonlinear PDE, and so motivate the later Chapters 10 and 11.

Chapter 4 is a grab bag of techniques for explicitly (or kind of explicitly)
solving various linear and nonlinear partial differential equations, and the
reader should study only whatever seems interesting. The section on the
Fourier transform is, however, essential. The Cauchy-Kovalevskaya Theorem
appears at the very end. Although this is basically the only general existence
theorem in the subject, and thus logically should perhaps be regarded as
central, in practice these power series methods are not so prevalent.

PART II: Theory for Linear Partial Differential Equations

Next we abandon the search for explicit formulas and instead rely on
functional analysis and relatively easy “energy” estimates to prove the ex-
istence of weak solutions to various linear PDE. We investigate also the
uniqueness and regularity of such solutions, and deduce various other prop-
erties.

Chapter 5 is an introduction to Sobolev spaces, the proper setting for
the study of many linear and nonlinear partial differential equations via en-
ergy methods. This is a hard chapter, the real worth of which is only later
revealed, and requires some basic knowledge of Lebesgue measure theory.
However, the requirements are not really so great, and the review in Ap-
pendix E should suffice. In my opinion there is no particular advantage in
considering only the Sobolev spaces with exponent p = 2, and indeed in-
sisting upon this obscures the two central inequalities, those of Gagliardo-
Nirenberg-Sobolev (§5.6.1) and of Morrey (§5.6.2).

In Chapter 6 we vastly generalize our knowledge of Laplace’s equation to
other second-order elliptic equations. Here we work through a rather com-
plete treatment of existence, uniqueness and regularity theory for solutions,
including the maximum principle, and also a reasonable introduction to the
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study of eigenvalues, including a discussion of the principal eigenvalue for
nonselfadjoint operators.

Chapter 7 expands the energy methods to a variety of linear partial
differential equations characterizing evolutions in time. We broaden our
earlier investigation of the heat equation to general second-order parabolic
PDE, and of the wave equation to general second-order hyperbolic PDE. We
study as well linear first-order hyperbolic systems, with the aim of motivat-
ing the developments concerning nonlinear systems of conservation laws in
Chapter 11. The concluding section 7.4 presents the alternative functional
analytic method of semigroups for building solutions.

(Missing from this long Part II on linear partial differential equations is
any discussion of distribution theory or potential theory. These are impor-
tant topics, but for our purposes seem dispensable, even in a book of such
length. These omissions do not slow us up much, and make room for more
nonlinear theory.)

PART III: Theory for Nonlinear Partial Differential Equations

This section parallels for nonlinear PDE the development in Part II, but
is far less unified in its approach, as the various types of nonlinearity must
be treated in quite different ways.

Chapter 8 commences the general study of nonlinear partial differential
equations with an extensive discussion of the calculus of variations. Here
we set forth a careful derivation of the direct method for deducing the ex-
istence of minimizers, and discuss also a variety of variational systems and
constrained problems, as well as minimax methods. Variational theory is
the most useful and accessible of the methods for nonlinear PDE, and so
this chapter is fundamental.

Chapter 9 is, rather like Chapter 4 before, a gathering of assorted other
techniques of use for nonlinear elliptic and parabolic partial differential equa-
tions. We encounter here monotonicity and fixed-point methods, and a va-
riety of other devices, mostly involving the maximum principle. We study
as well certain nice aspects of nonlinear semigroup theory, to complement
the linear semigroup theory from Chapter 7.

Chapter 10 is an introduction to the modern theory of Hamilton-Jacobi
PDE, and in particular to the notion of “viscosity solutions”. We encounter
also the connections with the optimal control of ODE, through dynamic
programming.
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Chapter 11 picks up from Chapter 3 the discussion of conservation laws,
now systems of conservation laws. Unlike the general theoretical develop-
ments in Chapters 5-9, for which Sobolev spaces provide the proper abstract
framework, we are forced to employ here direct linear algebra and calculus
computations. We pay particular attention to the solution of Riemann’s
problem and to entropy criteria.

Appendices A-E provide for the reader’s convenience some background
material, with selected proofs, on inequalities, linear functional analysis,
measure theory, etc.

The Bibliography primarily provides a listing of interesting PDE books
to consult for further information. Since this is a textbook , and not a refer-
ence monograph, I have mostly not attempted to track down and document
the original sources for the myriads of ideas and methods we will encounter.
The mathematical literature for partial differential equations is truly vast,
but the books cited in the Bibliography should at least provide a starting
point for locating the primary sources.

1.5. PROBLEMS

1. Classify each of the partial differential equations in §1.2 as follows:
(a) Is the PDE linear, semilinear, quasilinear or fully nonlinear?
(b) What is the order of the PDE?

The next exercises provide some practice with the multiindex notation
introduced in Appendix A.

2. Prove the Multinomial Theorem

@+ 4z )= ('Z')za,

lal=k
1
where (lgl) = ]%!f, ol = ailog!. .. an!, and 2% = 731 ... 28", The sum
is taken over all multiindices @ = (ay, ..., a,) with |a| = k.
3. Prove Leibniz’ formula

D% (w) = Z (g) DPuD Py,
BLa

a

where u,v : R® — R are smooth, (B) = B_'(%V’ and 8 < a means
Bi<e; (i=1,...,n)
4. Assume that f: R"™ — R is smooth. Prove
1
fz)= 3 =D%f(0)z” +0(j2/*!) asz—0

laj<k
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for each k =1,2,.... Thisis Taylor's formula in multiindex notation.
(Hint: Fix £ € R™ and consider the function of one variable g(t) =

f(tz).)



