Werking with
Microprocessors




8860916

WORKING WITH
MICROPROCESSORS

Ian Sinclair

o

LT

88888888




Collins Professional and Technical Books
William Collins Sons & Co. Ltd
8 Grafton Street, London W1X 3LA

First published in Great Britain by
Collins Professional and Technical Books 1986

Distributed in the United States of America
by Sheridan House, Inc.

Copyright © Ian Sinclair 1986

British Library Cataloguing in Publication Data
Sinclair, Ian R.

Working with microprocessors.

1. Microprocessors

I. Title

621.3916 TK7895.M5

ISBN 0 00 383320 8

Printed and bound in Great Britain by
Mackays of Chatham, Kent

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system or
transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording or otherwise,
without the prior permission of the publishers.



8860916

WORKING WITH
MICROPROCESSORS



Preface

There are by now very few aspects of machine control that do not feature
the use of microprocessors, and the small computer has made its mark in
both home and business to an extent that could not have been predicted
five years ago. This enormous expansion of the use of microprocessors
has not, however, been matched by the availability of suitable informa-
tion. The manufacturers provide a great variety of data books and
applications sheets, but these are aimed at the professional designer, who
knows what to look for and uses the information more for reference
purposes than for learning about microprocessors generally. There must
be many design engineers who have been accustomed to analogue
circuits, may have had some encounters with TTL digital circuits, but
who are now required to work with microprocessor circuits. Similarly,
service engineers who may never have seen the circuitry of a microproces-
sor device are now being required to service increasing numbers of
machine-controllers and small computers. In addition, there are many
more technically interested readers who would like to know more about
the hardware of microprocessor circuits, but have no suitable source of
information.

The aim of this book is to deal with the hardware of modern
microprocessor devices at a level suitable for the beginner. I don’t mean
the complete beginner to electronics, because explanations starting from
scratch would make the book much too long. I have assumed that the
reader knows something of digital systems, in particular the use of binary
code and the actions of gates and flip-flops. This is the minimum
background knowledge that will be needed for this book, and it seems a
reasonable assumption. The principles of gates and flip-flops are
summarised in the first chapter, so as to lead to explanation of the
operation of the microprocessor. I have not assumed any software
knowledge, because this book is concerned predominantly with hard-
ware, but some software knowledge will be an advantage, almost an
essential, for any reader who pursues the topics further, particularly to
reading the manufacturers’ data manuals.
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In addition, some topics have been simplified, and the more complex
details of others omitted. Modern microprocessor systems are not
necessarily complicated systems, but some of the chips that are used,
particularly ports, are complicated in the sense that they have to be
programmed, and the programming allows such a vast range of options
that a full treatment of the chip requires a large manual to itself. Because
this book is concerned mainly with hardware, the software programming
of ports, for example has been omitted, along with some of the more
exotic options that are available. The aim of this book is to show how
microprocessor systems are connected up, what signals exist, the timing
relationships, and the actions. These are the topics that the hardware
designer and the service engineer particularly need to understand. Qne
complete chapter has been devoted to the problems of servicing
microprocessor equipment, and the instruments that are available.
Systems have been treated fairly generally, but because examples are
always helpful, I have taken examples from a number of devices that are
widely used. Of these, the Z80 family is hardly modern though it is very
extensively used, but the Intel 8086 and 80256, along with the Motorola
68000 series, are comparatively recent and will be found on a large
amount of equipment in years to come. The Texas TMS series has also
been mentioned as an example of microprocessor chips that are found
mainly in machine-control equipment (programmable controllers).

It is my hope that this book will fill a need that has existed for some
considerable time, and that it will be useful for the hard-pressed engineer
who has been plunged very suddenly into working with microprocessor
equipment. I am very grateful to many firms who provided information,
in particular Motorola Ltd, SGS-ATES, Rapid Recall (for Intel data),
Texas Instruments, Commodore, GSC (U.K.) Ltd, Thurlby Elec-
tronics Ltd, and to Mr P. Mutton of the Essex Electronics Centre,
University of Essex. I am also grateful to past students who by their
questions made me aware of what was required in a book of this kind.
Finally, I am most grateful to the team at Collins, headed by Bernard
Watson, who saw the need for this book and commissioned it.

Ian Sinclair
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CHAPTER 1
What is a Microprocessor?

A microprocessor is a programmable logic chip which can make use of
memory. Memory in this sense means storage for data which can be
written (data stored) or read (data copied). The microprocessor can
address this memory, meaning that it can select any part of the memory
to store data or to copy existing stored data and make use of it. Within the
microprocessor chip itself, logic actions such as the standard NOT, AND,
OR and XOR actions can be carried out, as well as a range of other
actions such as shift and rotate, and some simple arithmetic. The fact that
any sequence of such actions can be carried out under the control of a
program 1is the final item that completes the definition of a
MiCTOProcessor.

In general, microprocessors are designed so as to fall into one of two
classes. One type is intended almost exclusively for industrial control, and
this also extends to the control of domestic equipment such as central
heating systems. A microprocessor of this type will often be almost
completely self-contained, with its own memory built in, and very often
this will include the programming instructions. Such microprocessors will
very often need to work with a limited number of binary digits (bits) at a
time, perhaps 4. The number of possible programming instructions need
only be small. The control microprocessor will also be offered typically as
a ‘semi-custom’ device, with the programming instructions put in at the
time of manufacture for one particular customer. By contrast, the
alternative is the type of microprocessor whose main purpose is
computing. The computer type of microprocessor contains little or no
memory of its own, but is capable of addressing large amounts of external
memory. It will deal with at least 8 bits, and more usually 16 or 32 bits,
of data at a time. It has a much larger range of instructions, and will
generally operate at higher speeds.

In this book, we shall be concerned with both types of microprocessors,
particularly with the many features that they have in common. Before we
begin though, it will be useful to look over the history of this remarkable
device whose effect on us in this century is comparable with the effect that
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the steam engine had in the nineteenth century. It’s worth recalling,
incidentally, that the steam engine was thought to be a device that would
cause mass unemployment, yet within a few years of its general adoption
as the motive power for factories, reformers were beginning to be
concerned about the effects of overemployment, particularly child
labour.

The Microprocessor History

The development of the microprocessor was a set of events which
consisted partly of accidents, partly of strokes of genius, and partly of
good marketing. The origin of the microprocessor was a military
contract, placed in the later 1960s, for a programmable controller chip.
The contract, like so many of its kind, was cancelled just at the time when
production was starting, and the company was left with a production line
which had been paid for, but which could make only devices that no-one
wanted. The device was what we would now call a 4-bit microprocessor,
the Intel 4004. For some time, this looked like the answer to a problem
that no one had, but some good marketing activity stimulated engineers
to consider the possibilities of a single-chip device which could carry out
the actions that until then had required a large assembly of boards.
Machine control was one obvious outlet, and the startling new one was
the microcomputer. Up to that time, computers depended on construct-
ing central processing units which were very bulky and which depended
on fairly small-scale integration at best, often on discrete transistor
circuitry. The possibility of a complete computer processing unit in a
single-chip form had been thought of, but its emergence as a practical
working chip nevertheless took engineers by surprise. For that reason,
many of the most significant steps in the use of the microprocessor in the
early days appear to have been made by students of electronics, or
amateurs experimenting with ‘surplus’ components.

The 4004 then spawned the 8008, the first 8-bit microprocessor, and
this brought about the possibility of really powerful low-cost small-size
computers. The Motorola 6800 demonstrated different thoughts about
how a microprocessor chip should be designed, and MOSTEK rethought
the 6800 and came up with the 6502. This was the microprocessor which
Steve Jobs and Steve Wozniak built into their first prototype Apple
computer, and which was later used in most of the very successful small
computers, including the BBC machine. When, around the same time, the
8008 was developed into the 8080, and Gary Kildall developed the CP/M
operating system for small computers, the microprocessor industry as we
know it now began the remarkable growth that slowed only in 1985. It’s
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a classic U.S. story of brilliant design, accidents and taking advantage of
opportunities. It’s rather difficult to imagine anything similar happening
in the U.K.

Gates

A gate circuit, in electronics, is one which has a number of inputs and
(usually) one output. Each input can be driven to one of two states, called
O or 1. For most purposes, 0 means a voltage level of about 0to 0.8 V, and
1 means a voltage level between 3.0 V and 5.2 V. The precise voltages are
unimportant, so long as the two voltages cannot overlap. For any gate
circuit, there will be some combination of inputs which will make the
output voltage rise to the 1 level. There may be more than one
combination of inputs which gives this output, but for all gate circuits it
is the combination of inputs that is important. For this reason, gate
circuits are sometimes called combinational circuits. One particularly
important feature of combinational circuits is that any circuit action can
be obtained by connecting a few basic types of gate circuits. These basic
gate types are known as NOT, AND, OR and XOR, and the principles of
analysing a logic action into combinations of these gates were first
worked out by the Lincolnshire mathemetician George Boole in the early
nineteenth century. The method that he devised, called Boolean algebra,
is used to this day to analyse devices that he could not possibly have
dreamed of.

As far as a microprocessor is concerned, however, all gates are of a
fairly simple type, with two inputs and one output. The basic types are the
same, but the method by which gates are used is very different. In a
hardware circuit, for example, it is possible to act on groups of signals in
parallel. You might have eight input signals being applied to four
different gate inputs at the same time. The gates in the microprocessor can
be used only one at a time, in sequence. This makes our use of gates quite
different from the methods that we use in hardware circuits, and if you are
used to hard-wired gate circuits, then you need to adjust your thinking
considerably. The best place to start is with a reminder of how the basic
gate circuits work for the usual one or two inputs that are always used
within microprocessors.

The NOT gate operates on a single-bit input. As always with gate
circuits, the best way of describing the action is by the use of a truth table,
in which each possible input and output is listed. For the NOT gate, the
truth table is the very simple one in Figure 1.1. The action of the NOT gate
is inversion, giving an output which is the inverse of the input, the other
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possible logical value. The AND gate obeys the rules of the truth table of
Figure 1.2. Two inputs are required for this logic comparison, and the
output is at level 1 only when beth inputs are simultaneously at this level.
The other two gate actions also require two inputs each, and their truth
tables are illustrated in Figures 1.3 and 1.4 respectively. The OR action
makes the output bit equal to level 1 when either input is at level 1, or
when both inputs are at level 1. The)(OR gate differs slightly from the OR
inasmuch as it zexcludes the case when both inputs are at level 1, hence the
name. One way of looking at the two-input XOR gate is that the output
is at logic 1 only when the inputs are different (one at 0, the other at 1).

Within the microprocessor, these logic gates are arranged in sets. A
microprocessor deals with groups of bits at a time. The earliest

in out
A \ Q
@ il
A|Q
in | out
(b) 0 1
1 0

Fig. 1.1 The NOT gate or inverter. (a) The symbol which is used in a circuit diagram.
Note that the small circle denotes inversion of a signal. If the circle is placed at the
input, it means that an inverted signal is needed at the input to operate a device.
(b) The truth table for the NOT gate.

A
inputs Q
B

(a)

A B Q

0 0 0

0 1 0
(b)

1 0 0

1 1 1

Fig. 1.2 The AND gate, showing (a) the circuit symbol and (b) the truth table. The
internal AND gates of a microprocessor are of this type, with two inputs per gate.
The international symbol has been used because the alternative BS symbol is seen
only in some U.K. examination papers.
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A
inputs Q
B output

A B Q
0 0 0
0 1 1
1 0 1
1 1 1

Fig. 1.3 The international circuit symbol and truth table for the OR gate. The action
is that any input or combination of inputs at logic 1 will cause the output to be at

logic 1.
A
inputs Q
B output

A B Q
0 0 0
0 1 1
1 0 1
1 1 0

Fig. 1.4 The international circuit symbol and truth table for the XOR gate. The
action is almost identical to that of the OR gate, but excluding the case when more
than one input is at logic 1.

microprocessors dealt with 4-bit groups, and several industrial controller
microprocessors, along with specialised calculator chips, still use 4-bit
groups, sometime known as nibbles. By far the most common grouping,
even in the latter part of the 1980s, is the byte, a set of 8 bits, and this
grouping is used by both industrial control and computing microproces-
sors. The later types of computing microprocessors, however, use the 16-
bit grouping which is called a word or sometimes a guip.

Suppose we consider for a moment the nibble group for a controller
microprocessor. This would need to be able to work with two sets of 4-bit
groups, and would apply them to the inputs of gates arranged in fours.
Each gate would work with the corresponding bits in each group. These
bits are conventionally numbered from one end, counting the least-
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significant bit as bit 0, the next as bit 1 and so on. If the idea of
‘significance’ is new to you, please look at Appendix A now. The AND
gate, for example, in a 4-bit microprocessor, would AND bit 0 of one
group with bit 0 of the other group and at the same time AND bit 1 of the
first group with bit 1 of the second, and so on. In other words, the logic
gate actions are carried out with a set of identical gates in parallel, each
gate working on one place of bit. Figure 1.5 illustrates this with the AND
action on two 4-bit nibbles. For a 4-bit microprocessor, then, the gating
for each action consists of one gate for each bit in the group that is used.
An 8-bit microprocessor will need eight gates of each type, and the 16-bit
microprocessor will need sixteen gates of each type.

To illustrate how gate actions are typically used, consider a 4-bit
processor which is being used to control the action of a washing machine.
At one point in the cycle, the controller must switch on the wash motor
if (a) there is water at the correct level, (b) the water temperature is correct,

- (¢) the safety switch is closed and (d) the motor is not already moving.
Suppose that each of these conditions is represented by 1 bit of a 4-bit
nibble. When each condition is true, the corresponding bit is put to logic
level 1, so that for all conditions true the nibble is 1111. Now if this
is made one input of the AND gate, and the other inputis also 1111, then
the output will also be 1111 but only while all 4 bits from the water,
temperature, safety-switch and motor sensors are all correct. The
program for this microprocessor will therefore carry out the AND action,
and test for the result being 1111, upon which the motor will be switched
on.

Consider now a very different action, this time using an 8-bit byte

1st nibble 2nd nibble
—————
10 1 1 01 1 0
NN~ T o -
N \\\\\ T T T
\\\\ \\ ///:///////////

resulting nibble

Fig. 1.5 The microprocessor makes use of gates which each have two inputs. Each
input is taken from 1 bit in each of two groups (nibble, byte or word). The bits are
in corresponding positions in the group, and this illustration shows 2 nibbles being
ANDed by four AND gates.
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[+ o 1 1 o 1 1 O?ByteA
IJ 1 1 0 0 1 0 1ﬁlCodebyte

————— XOR action- — — — — — —

Byte B is now a coded form of Byte A —
it can be decoded by another XOR
action using the same code

o
o
s
o
o

1 TlByteB
[+ 7 17 0 o 1 o 1] code byte

Byte A recovered by
b 0 ! ! 0 ! ! Oj decoding action

Fig. 1.6 lllustrating the coding and decoding action of the XOR gate set when
applied to a byte. Using a code of several bytes repeated in sequence can give
coded text which is very difficult to decode without knowledge of the code bytes
that were originally used.

example, Figure 1.6. A byte is used as a code for a letter of the alphabet.
By using the XOR action with another byte, the result is a coded version
of the original. This can, in turn, be decoded by another XOR action with
the same code byte, giving the original byte. This is a method that can be
used to code messages with a very good degree of security, provided that
a group of code letters are used in sequence.

These examples show something of the range of uses for the gate
actions, which are the backbone of all process control actions and are also
very important in computing actions.

Registers

A register is a circuit, made up from flip-flops, which can store a set of
bits. The flip-flop, remember, is a unit which can have its output set (to
logic 1) or reset (to logic 0) by a pulse at its input. An 8-bit register will be
able to store 8 bits, a 16-bit register will store 16 bits, and so on.
Registers, unlike gates, are clocked devices. This means that their actions
are controlled by a pulse, the clock pulse, which is applied to a separate
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sluck mput All input bits are copied
iy B into the register together
when the clock pulse arrives
T
10110010
(a)
clock input One input bit is copied into the
O - register at each clock pulse, and
v G existing bits are shifted to make room
input

(b)
N T

Fig. 1.7 Registers, parallel and serial. A parallel register must have as many input/
output connections as it stores bits. All of the inputs and outputs will be active at
a clock pulse. The serial register deals with 1 bit at each clock pulse, and shifts bits
along the register at each clock pulse.

terminal. A register can be loaded with bits, and the loading can be
parallel or serial. Taking an 8-bit register as an example, using parallel
loading would require eight inputs to the register. When signals (0 or 1)
exist on these eight lines, then a pulse to a clock terminal on the register
will load in the 8 bits, meaning that the signal levels are stored in the
register. If the register is to be serial loaded, then only one input line is
used. Each time a bit signal exists on the line, applying a clock pulse will
cause the register to load in this bit and shift all the other bits one place
along to make room. Figure 1.7 illustrates the principles of parallel and of
serial loading. Registers can also pass their stored bit signals to other
circuits, and once again the methods may be parallel or serial. If parallel
output is used, there must be one output for each bit, and the outputs will
be connected to the appropriate flip-flops of the registers when the clock
pulse is received. If serial output is used, only one output is needed, but
only 1 bit will be fed out for each clock pulse.

Registers and gates are the building blocks of both microprocessors
and memory chips. A memory chip is a set of registers which is equipped
with gates to switch signals in or out as required. The microprocessor is
a more complicated device, but in essence it consists also of registers
which are connected through gates. This is the important feature that
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Gate 1
output

Gate 2

output

r

A B

select lines

Fig. 1.8 Using gates to change signal paths from one of two registers to a third. The
OR gate which is illustrated may not be physically present inside the microproces-
sor (if, for example, a wired-OR construction is used), but its action will be
implemented in the logic.

ultimately makes the microprocessor a programmable device. Imagine,
to start with, that we have three 1-bit registers (flip-flops) which are
connected by gates as illustrated in Figure 1.8. The outputs of either
register A or register B can be connected to register C through the gates.
If gate 1 is enabled and gate 2 disabled, then the output of register A is
connected to register C, and the bit will be transferred at the next clock
pulse. If gate 2 is enabled and gate 1 disabled, then the transfer will be
from register B to register C. In this example, the output from the registers
has been used to provide the input for another register, but it could
equally well have provided the input to another gate. The important point
is that the signal path has been controlled by signals to two gates, and if
we wanted to control a set of eight signals instead of one, then the same
principles apply. The next point is how the gate signals are to be applied.
Getting back to the simple single-bit control system, we needed two
signals to the gates. For connecting registers A and C, we needed gate 1
enabled, gate 2 disabled. For connecting registers B and C, we needed
gate 1 disabled, gate 2 enabled. These two cases require signals of (binary)
10 (A to C) or 01 (B to C) at the gate inputs 1 and 2 respectively. We could
disable both gates by using 00, but we’ll leave that possibility for the
moment.
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select signals
A B

output

control register

Fig. 1.9 Using a single output of a control register, here illustrated as of 1 bit only,
to provide select signals that will control the data path of Figure 1.8.

The next step is to imagine that the gate inputs are provided from a
register. The output of the register (Figure 1.9) can be connected to the
input of gate 1, and through an inverter to gate 2. In this way, if the output
of the register is a 1, then gate 1 is enabled, gate 2 is disabled, and registers
A and C are connected. Making the output of this control register equal
to zero will reverse the gating, and connect registers B and C. This one
simple step has, however, made our simplified circuit into a programma-
ble device! The programming is carried out by storing a bit in the control
register, because that bit will then determine the signal paths between the
other registers. Programming now consists of placing suitable bits into a
control register, so that the gating circuits can then make the correct
connections between registers. Though this has been a simplified
explanation, all of the principles of operation are identical. For a
microprocessor, then, there will be a control register which will be used to
contain bits that open or close gates and so make or break connections
between other registers.

Before we abandon this simple model of a programmable device,
though, we can use it to demonstrate another point about programmable
operation. The timing of the operations is very important for any
programmable actions. In the simple example, the bit that controls the
gates must be in place, in the control register, before the transfer of bits
between registers can take place. Because of the type of register
construction that is used, this means that the action of transferring a bit
from one register to another would require three clock pulses. On the first
clock pulse the control register would accept the programming bit. On the
second clock pulse the registers A or B would be connected to register C
and on the third clock pulse the bit would be transferred. In the simple
circuits of Figures 1.8 and 1.9 , of course, there are always register
connections between A and C or B and C, whether thereisa 1 ora 0 in



