v

, 19780892

GENERATORS AND RELATIONS
FOR DISCRETE GROUPS

H.S. M. COXETER
AND

W. 0. J. MOSER




Y 2 veq.

 Ee  ABe80 8B
GENERATORS AND RELATIONS

FOR DISCRETE GROUPS

H.S.M. COXETER

~ SPRINGER-VERLAG
BERLIN - GOTTINGEN - HEIDELBERG
‘ . 1957




ALLE RECHTE, INSBESONDERE DAS DER UBERSETZUNG
IN FREMDE SPRACHEN, VORBEHALTEN

OHNE AUSDRUCKLICHE GENEHMIGUNG DES VERLAGES IST ES AUCH NICHT
GESTATTET, DIESES BUCH ODER TEILE DARAUS AUF PHOTOMECHANISCHEM
WEGE (PHOTOKOPIE, MIKROKOPIE) ZU VERVIELFALTIGEN

© BY SPRINGER-VERLAG OHG.
BERLIN + GOTTINGEN - HEIDELBERG 1957

PRINTED IN GERMANY

BRUHLSCHE UNIVERSITATSDRUCKEREI GIESSEN



ERGEBNISSE DER MATHEMATIK
UND IHRER GRENZGEBIETE

UNTER MITWIRKUNG DER SCHRIFTLEITUNG DES
»ZENTRALBLATT FUR MATHEMATIK*
HERAUSGEGEBEN VON

L.V.AHLFORS - R.BAER - R.COURANT - J.L.DOOB : S.EILENBERG
P.R.HALMOS - T NAKAYAMA - H. RADEMACHER
F.K.SCHMIDT - B. SEGRE - E. SPERNER

NEUE FOLGE - HEFT 14

REIHE:

GRUPPENTHEORIE

BESORGT
" VON

R. BAER

SPRINGER-VERLAG
BERLIN - GOTTINGEN - HEIDELBERG
1957



Preface

When we began to consider the scope of this book, we envisaged
a catalogue supplying at least one abstract definition for any finitely-
generated group that the reader might propose. But we soon realized
that more or less arbitrary restrictions are necessary, because interesting
groups are so numerous. For permutation groups of degree 8 or less
(i. e., subgroups of &), the reader cannot do better than consult the
-tables of JosePHINE Burns (1915), while keeping an eye open for
misprints. Our own tables (on pages 134—143) deal with groups of low
order, finite and infinite groups of congruent transformations, symmetric
and alternating groups, linear fractional groups, and groups generated
by reflections in real Euclidean space of any number of dimensiofs.

The best substitute for a more extensive catalogue is the description
(in Chapter 2) of a method whereby the reader can easily work out
his own abstract definition for almost any given finite group. This
method is sufficiently mechanical for the use of an électronic computer.

There is also a topological method (Chapter 3), suitable not only
for groups of low order but also for some infinite groups. This involves
choosing a set of generators, constructing a certain graph (the Cayley
diagram or DEHNsche Gruppenbild), and embedding the graph into
a surface. Cases in which the surface is a sphere or a plane are described
in Chapter 4, where we obtain algebraically, and verify topologically,
an abstract definition for each of the 17 space groups of two-dimensional
crystallography.

In Chapter §, the fundamental groups of multiply-connected surfaces
are exhibited as symmetry groups in the hyperbolic plane, the gene-
rators: being translations or glide-reflections according as the surface
is orientable or non-orientable.

The next two chapters deal with special groups that have become
famous for various reasons. In particular, certain generalizations of the
polyhedral groups, scattered among the numerous papers of G.A.
MILLER, are derived as members of a single family. The inclusion of a
slightly different generalization in § 6.7 is justified by its unexpected
connection with SHEPHARD’s regular complex polygons.

Chapter 8 pursues BRAHANA’s idea that any group generated by
two elements, one of period 2, can be represented by a regular map or
topological polyhedron.



VI Preface

In Chapter 9 we prove that every finite group defined by relahons
of the form

Ry = (R;R)" =E (I=si<j=n)

can be represented in Euclidean n-space as a group generated by re-
flections in »# hyperplanes. Many .well-known groups belong to this
family. Some of them play an essential role in the theory of simple Lie
- groups.

We wish to express our gratitude to Professor REINHOLD BAER for
inviting us to undertake this work and for constructively criticizing
certain parts of the manuscript. In the latter capacity we would extend
our thanks also to Dr. PATRIcK Du VAL, -Professor IrRVING REINER,
Professor G. DE B. RoBINsON, Mr. F. A. SHErK, Dr. J. A. Topp and
Professor A. W. Tucker. We thank Mr. J. F. PETRIE for two of the
“drawings: Figs. 4.2, 4.3; and we gratefully acknowledge the assistance
of Mrs. BERYL MOSER in preparing the typescript.

University of Toronto | ; H.S.M.C.
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Chapter 1

Cyclic, Dicyclic and Metacyclic Groups

After briefly defining such fundamental concepts as generators,
factor groups and direct products, we show how an automorphism of
a given group enables us to adjoin a new element so as to obtain a larger
group; e.g., the cyclic and non-cyclic groups of order 4 yield the quatern-
ion group and the tetrahedral group, respectively. Observing that the
standard treatises use the term metacyclic group in two distinct senses,
we exhibit both kinds among the groups of order less than 32, whose
simplest known abstract definitions are collected in Table 1.

Opinions seem to be evenly divided as to whether products of group
elements should be read from left to right or from right to left. We
choose the former convention, so that, if 4 and B are transformations,
A B signifies the transformation 4 followed by B.

1.1 Generators and relations. Certain elements Sy, Sgiviv 3 Sy, 0f a
given discrete group &, are called a set of generators if every element of &
is expressible as a finite product of their powers (including negative
powers). Such a group is conveniently denoted by the symbol

{55, Sgrcses Sl
When m = 1, we have a cyclic group
{S) = Ga s

whose order ¢ is the period of the single generator S. If g is finite,
S satisfies the relation S?= E, where E denotes the identity element.
A set of relations

2(S, Se oo S)=E  (B=1,2,...,5), (1.11)

satisfied by the generators of ®, is called an abstract definition of & if
every relation satisfied by the generators is an algebraic consequence
of these particular relations. For instance, if q is finite, S?= E is an
abstract definition of €, It is important to remember that, in such
a context, the relation S7= E means that the period of S is exactly g,
and not merely a divisor of ¢. This is sometimes expressed by saying
that the relation is not merely “satisfied”” but “fulfilled”’ (see MILLER,
BricHrFELDT and DIcksoN 1916, p. 143).

Returning to the general group &, defined by 1.11, let § be another
group whose abstract definition in terms of generators T, T, .., T,
is given by the relations '

Bi(T3,Tg 00, Ty =E (t=1,2,...,19. (1.12

Ergebn. d. Mathem. N, F. H. 14, Coxeter u. Moser 1



2 1.2 Factor groups

Then it is known that a necessary and sufficient condition for & to be
isomorphic to § is the existence of relations

T;=Ty(Sy, Sa, -+ Sm) (=12,...,m), (113

S;=Si{(Ty,Ty .. Ty (=12,...,m), (1.14)

such that 1.11 and 1.13 together are algebraically equivalent to 1.12 V
and 1.14 together (COXETER 1934b). For instance,

" RS=E (1.15)
and

S3=T%= SATST=E (1.16)
are two possible definitions for €, since the relations
Re=E, S=RS T=R?®
are equivalent to
- S3=T2=S-1TST=E, R=ST.
1.2 Factor groups. Let ® = (R, R,, ..., R,} be defined by the
s + r relations '

g(RuRy, .. R =E  (k=12,...,5+7).
The correspondence

Si—~ R; b=12.:.,M)
defines 2 homomorphism of ® (defined by 1.11) onto &'. The elements
2ilSts Sar v 0 Som) (B=s+ l,...,§+r) (1.21)

of ® all correspond to the identity element
gr(Ry, Ry, ..., Rp) =E (B=s+1,...,s+7)
of ®'. Hence the kernel of the homomorphism is the normal subgroup
R (Wge(Sy, Sgs v -+ » Sw) W} (B=s+1,...,547),

where W runs through all the elements of ®. In fact, Q is the smallest
normal subgroup of ® that contains the elements 1.21, and it follows that

& = 6GR.

In other words, the effect of adding new relations to the abstract de-

finition of a group &, is to form a new group &’ which is a factor group
of ® (KuroscH 1953, p. 76).

In particular, the effect of adding to 1.11 the relations
STIS,IS‘SJ= (1]=12... m)

is to form the commutator quotient group of ©, whlch is the largest
Abelian factor group of G.



1.3 Direct products

Every group with m generators is a factor group of the free group &,,,
which has # generators and no relations (REIDEMEISTER 1932a, p. 31).
Apart from some special considerations in § 7.3, p.88, we shall not
attempt to describe the modern development of the theory of free
groups, which began with the remarkable theorem of N1ELSEN (1921) and
ScHREIER (1927) to the effect that every subgroup of a free group is free
(see especially MAGNus 1939, BAER 1945, M. Harr 1949, CHEN 1951,
1954, Fox 1953, 1954 and KuroscH 1953, pp. 271—274).

1.3 Direct products. If two groups &, §, defined by the respective
sets of relations 1.11, 1.12, have no common element except E, and if
all elements of ® commute with those of §, then the m + » elements S
and T, generate the direct product

G&x9H. '
Clearly, a sufficient abstract definition is provided by 1.11, 1.12, and
SPTAS T;=E G=1,....,m; §=1,...,n),

However, in many cases the number of generators may be . reduced
and. the relations simplified. As an example, consider the cyclic groups
€, and €,, defined by the respective relations

S8=FE and T?2=E.

Their direct product €;x €,, of order 6, has the abstract definition 1.16;
but it is also generated by the single element R = ST and defined by
the single relation 1.15, which shows that €;x €, = €,. More generally,
the direct product of cyclic groups of orders ¢ and 7 is an Abelian group
€, x €, of order g7, which is cyclic if g and 7 are coprime:

EXE€ =€, (g.7)=1.

Still more generally, if $,¢,... are distinct primes, any. Abelian
group of order '

il
is a direct product
G XX
of Abelian p-groups (BurnsipE 1911, pp. 100—107), and every such
p-group is a direct product of cyclic groups:

Gpams Cpa, X Cpay X v o v,
where

=0+ g+ - . °
This p-group is described as the Abelian group of order $* and type
(%3, ¢g, . . -); in particular, the direct product of « cyclic groups of
order p is the Abelian group of order $* and type (1, 1,..., 1):
: € xE, X+ x€,.
1*



4 . . 1.3 Examples

Combining the above results, we see that every finite Abelian group
is a direct product of cyclic groups.

The infinite cyclic group €, is generated by a single element X
without any relations. Thus it is the same as the free group &, on one
generator. The inverse X! is the only other element that will serve
as a generator. The direct product

€L =€ XC€,

of two infinite cyclic groups is defined by the single relation
| XY=YX. (1.31)
Its finite factor groups are obtained by adding relations of the type
X*Ye=E.
For example, in the Abelian group
X?Ye=X°Y'=E, XY=YX, (1.32)

we have
Xe= Y, X¢'= Ybo= X-V",

and therefore X»= E, where n = b*+ ¢2. Suppose (b,¢) =d = yb— fec. ‘
Then X4 is a power of Y, namely

X — Xvbv-Bc — Y—-Bb+ye)
Also - ' ‘
Y? = X¢ = Y—cBotyc)/a — yd—yn/a ,

Y¢ = X0 = Y?Bbtye)a — Ye+Bn/a .

Since (B, ) = 1, the period of Y divides #/d, and any element of the
group is expressible as

Xeyv Osx<d 05y <nd).
Consider the direct product €, x €,/4 in the form
Z4= YW4—E, ZY =YZ.
The element X = ZY-(b+r¢)/d gatisfies XY = Y X and
XP Ve =2 Y0 Botyo)+olyp—Bol/a — Zb Y-Bnla — F |
X—c Y = Z~¢ Yic(Bo+yc) +b(pd—Bec)}/d — Z—c YVyn/d — F
Hence our original group {X,Y} is €;%x &,/ the direct product of
cyclic groups generated by
X Y Bb+re)ia gand Y.
It can be shown similarly that the Abelian group
Xe=Yt= XY, XY=YX
or

Ye=2v, Ze= X?, Xe=Y*, XYZ=ZYX=E (133



1.4 Automorphisms 5

is €y x G,/d, the direct product of cyclic groups generated by
XY ®riyod and Y,

where ¢ = b%+ bc + 2 and d — (b, c)=yb—fBec .(FRUCH'II‘ 1955, p. 12).

1.4 Automorphisms. Consider again the group ® = {S,, S,,.. S}
defined by 1.11. Suppose it contains m elements S}, Sorae Sh which
satisfy the same relations:

gk(siasé)---:s;n)’:E (k=1,2,...,8).
Then the correspondence
S;—~ S§ (t=1,2,...,m)" (141)

defines an awutomorphism of @ if the elements S; are a set of _generators,
i.e., if every S, can be expressed in terms of them

One fruitful method for deriving a larger group &* from a given
group & is to adjoin a new element T, of period ac (say), which trans-
forms the elements of & according to an automorphlsm of period c.
If we identify T° with an element U of period a in the centre of ®,
the order of ®* is evidently ¢ times that of . If the automorphism is
given by 1.41, the larger group is defined by the relations 1.11 and

TS, T=S}, To=U. (1.42)

This procedure is easily adapted to infinite groups. Although & may
be infinite, @ is still a normal subgroup of index ¢ in G*.
In the case of an inner automorphism, & contains an element R

such that, for every S in G,
RASR=T-ST,
ie.,, TR S = STR-L. Thus the element
Z=TR3=RT
of &* commutes with every element of &. The lowest power of Z that
belongs to 6 is
V=2¢=UR-,

of period 3, say. V, like Z, commutes with every element of @ since
it belongs to ®, it belongs to the centre.

If (b,¢) =1 (for instance, if b is prime to the order of the centre,
as in CoXETER 1939, p. 90), consider integers g, y, such that

yb—fBc=1.

Instead of adjoining T to &, we could just as well adjoin Z = TR'1
or adjoin ‘

ZVP = Z1+Be = Zvo |



6 1.5 Dihedral groups

whose cth power is
Zvve = Yyt = E

(since V?= E). Hence in this case _ _ ‘
G*=6x€,, iy L (1.43)
where (S is the cyclic group generated by zn,
1.5 Some well-known finite groups. The cyclic group (i,, defined by

the single relation
Si=E, (1.51)

L]

admits an outer automorphism of period 2 with transforms every element
into its inverse. Adjoining a new element R,, of the same period, which
transforms €, according to this automorphism, we obtain the dihedral
group ®,, of order 2¢, defined by 1.51 and

v , RASR=S? Ri:=E,
that is, ,
S¢= R% = (SR 2= F. . (1.52)

The same group 9, is equally well generated by the elements R, and
‘Ry= R,S, in terms of which its abstract definition is

R:=R:= (R,R)i=E. (1.53)

" The “even” dihedral group ®,,,, defined by 1.53 with g = 21?:, has
a centre of order 2 generated by Z = (R,R,)™. If m is odd, the two
. elements R, and R = R,Z satisfy the relations

R = R*= (R, R)*=E,
so that {R,, R} is ®,,, and we have
Deme=2 X9y (m odd). (1.54)

Since 9,,,, (m odd) can be derived from ®,, by adjoining R,, which
transforms 9,, in the same manner as R, we see that 1.54 is an example
of 148 (witha=b=1,¢=2 f=9y=—1,T=R, U=V= E)

When m = 1, 1.54 is the four-group

@25 gg X@l.':_‘i ng Gg >
defined by '
R =Ri= RR)=E

‘In terms of the three generators R;, R, and Ry= R,R,, these relations
become

R:=R:=RE=R,RR,=E. (1.55)



1.6 Dicyclic groups 7

In this form, ®, clearly admits an outer automorphism of period 3 which
cyclically permutes the three generators. Adjoining a new element S
which transforms ®, in this manner, we obtain a group of order 12
defined by 1.55 and

S'=E, STR,S'=R, G=12).

The same group is generated by S and R,, in terms of which it has the
abstract definition

S'=R}=(SRP'=E. o (1.56)

. T
Since the permutations S = (1 2 3) and R,= (1 2) (3 4) generate the
alternating group A, of order 12 and satisfy the relations 1.56, we con-
clude that the group defined by these relations is ;. The above deri-
vation shows that 2, contains ®, as a normal subgroup.
A, is equally well generated by S and U = S—'R,, in terms of whxch
its definition is

S'= 3= (SU)?=E. C(1.57)

Clearly, 9, admits an outer automorphiém of period 2 which inter-
changes the generators S and U. Adjoining such an element T, we
obtain a group of order 24 defined by 1.57 and

I*=E, TST=1U. - (1.58)
In terms of the generators S and T, this group is defined by
S3=T%= (ST)=E. (1.59)

Since the permutations S = (234), T= (12), which generate. the
symmetric group &, of order 24, satlsfy 1.59, we conclude that the
group defined by these relations is &,. In terms of the generators S
and U = ST, &, is defined by

S3=Ut=(SU)=E

1.6 Dicyclic groups. When g is even, say g =2m, the automorphism
S — S-1 of €, can be used another way. Adjoining to

Sim= E (1.61)

a new element T, of period 4, which transforms S into S while its

square is S™, we obtain the dicyclic group {2, 2, m), of order 4m, defmed
by 1.61 and

T3= S, TAST= S,
Since the last relation may be written as (ST)*=13%S and T satlsfy
Sr=T2= (ST)% (1.62)



8 1.7 The quaternion group

To show that these two relations suffice to define (2, 2, m), we
observe that they imply

ST TATAT=T2ASPT= (TAST)"= S,
which is 1.61 (COXETER 1940c, p. 372; cf. MILLER, BLICHFELDT and

Dickson 1916, p. 62).

In terms of the three generators S, T, and R= ST, (2,2,m) is
defined by the relations

R2= Sm»=T2=RST, (1.63)
or in terms of R and T alone:

R:=T2= (RT)™, (1.64)

Of course, the symbol (2, 2, m) could just as well have been written
as (m, 2, 2) or (2, m, 2). Other groups {/, m, n) will be discussed in § 6.5.

1.7 The quaternion group. The smallest dicyclic group
Q=~(2,22),
called the guaternion group, is defined by S*=T2%= (ST)2 or
R2= 52=T2=RST. (1.71)
Note the resemblance to the famous formula
PB=12=k=ijk=—1

of HamILTON (1856, p. 446).
Q is the smallest Hamsiltonian group, that is, it is the smallest non-
" Abelian group all of whose subgroups are normal. In fact, the Hamil-
tonian groups are precisely the groups of the form

QXAXYB,

where 2 is an Abelian group of odd order, and B is an Abelian group
of order 2™ (m = 0) and type (1,1,...,1) (HiLToN 1908, p. 177; CAR-
MICHAEL 1937, p. 114; ZAssENHAUS*937, p. 123; Scorza 1942, p. 89).
Q is also the smallest group of rank 1, that is, it is the smallest non-
Abelian group all of whose proper subgroups are Abelian. The groups
of rank 1 have been investigated by MILLER and MoRENO (1903),
_ ScuMIDT (1924) and REDEI (1947). REDE! showed ‘that, apart from Q,
every such group belongs to one of three well-defined families. It thus
appears that Q is the only finite non-Abelian group all of whose proper
subgroups are Abelian and normal. ’

1.8 Cyclic extensions of cyclic groups. If (g,7) =1, the cyclic group
1.51 admits an automorphism )

S-S, (1.81)



1.8 Cyclic extensions of cyclic groups 9

whose period ¢ is the exponent to which 7 belongs modulo ¢, so that
7°=1 (mod q) .

We derive a group of order gc by adjoining a new element T, of period
ac (where a divides both ¢ and »— 1), such that

TAST= 8, Tc= Svls,
Writing m = g/a, we have the abstract definition
Sm=Te¢= U, Ut=E, TAST= Sr : (1.82)
{(implying U" = S*m = (T-1S T)'fl‘ = T-1UT = U) for this group of order

mac. (When ¢ = 2 and 7 = — 1, 'he group is dihedral or dicyclic accor-
dingasa=1ora=2)

These relations can be simplified if
(@,m) =1.
Forif ya+ am =1, we have

S = SHatam _ Sra [J& = (Sa)u T“‘,

so that 1.82 is generated by S;= S¢ and T, in terms of which it has
the abstract definition

STt=Te°=E, TS5, T=S].
Dropping the subscript, we are thus led to consider the group
Sm=Tnr=F, T1ST= S, (1.83)

of order mn, derived from €,, by adjoining T, of period #, which trans-
forms €,, according to the automorphism 1.81, of period ¢. The new
feature is that we no longer identify 7 with an element of €,,. Since

S*=T*STr=§
the consistency of the relations 1.83 requires
=1 (mod m); ‘ (1.84)

i.e., » must be a multiple of the exponent to which 7 belongs modulo m
(CarMICHAEL 1937, p. 176). Thus 1.83 is a factor group of

Tn=E, T-1ST= Sr (1.85)

(where » may be positive or negative). The group 1.85 is infinite if
r*= 1, and of order

ne|r—1|



