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Preface to SI Edition

The decision to produce an SI version of the second edition of Fluid Mechanics and
Hydraulics was prompted by the increasing use of SI units in teaching and industry. A few
textbooks have been produced in SI units, but there exists a demand for a book of worked
examples.

SI units are still in a transition stage and common usage continues to modify the system.
Large amounts of data are readily available only in foot-pound units and will be for some time to
come. We have therefore included some conversion factors particularly for pseudo-dimensionless
numbers such as specific speed.

This edition is essentially an adaptation of the second edition and all the examples have been
retained and, where necessary, converted. In some cases the conversions have been rounded to
convenient numbers, but in many cases accuracy or usage has required less convenient numbers.
We believe that this method has considerable merit since practising engineers deal with numerical
values as they arise and these are seldom round numbers. While our conversions have been made
with a high accuracy, the answers to the unworked problems are quoted to slide rule accuracy
only. This approach has been adopted since it is important that an engineer should gain some
appreciation of the actual and necessary accuracy of his working and should not be deluded by the
pretentious accuracy of his calculator. The tables have been converted to conform with the text,
but, in addition, some useful foot-pound units have to be retained.

We wish to express our gratitude to the staff of McGraw-Hill (UK) for their helpful
cooperation.

D. J. POLLARD
E. H. WiLsON
Guildford
August 1976



Symbols and Abbreviations

The following tabulation lists the letter symbols used in this book. Because the alphabet is
limited, it is impossible to avoid using the same letter to represent more than one concept. Since
each symbol is defined when it is first used, no confusion should result.

a
A
b

acceleration in m/s?, area in m?

area in m?

weir length in m, width of water
surface in m, bed width of open
channel in m

coefficient of discharge, celerity of
pressure wave in m/s (acoustic
velocity)

coefficient of contraction

coefficient of velocity
coefficient  (Chezy),
integration

center of gravity
center of pressure, power coefficient
for propellers

coefficient of drag

thrust coefficient for propellers
coefficient of lift

torque coefficient for propellers
Hazen—Williams coefficient

cubic feet per second

diameter in m

unit diameter in m

efficiency

bulk modulus of elasticity in Pa or
N/m?, specific energy in Nm/N or J/N
friction factor (Darcy) for pipe flow
force in N, thrust in N

gravitational acceleration in m/s?
= 9.81 m/s?

gallons per minute

head in m, height or depth in m,
pressure head in m

total head (energy) in m or J/N

lost head in m (sometimes LH)
horsepower = 0.746 kW

constant  of

I

xy

k

:EE

psia
psig

Q.

moment of inertia in m*

product of inertia in m*

ratio of specific heats, isentropic
(adiabatic) exponent, von Karman
constant

discharge factors for trapezoidal
channels, lost head factor for
enlargements, any constant

lost head factor for contractions
mixing length in m

length in m

equivalent length in m

roughness factor in Bazin formula,
weir factor for dams

mass flow rate

mass in Kg, molecular mass
roughness coefficient, exponent,
roughness factor in Kutter’s and
Manning’s formulas

rotational speed in rev/min

specific speed

unit speed

Froude number

Mach number

Weber number

pressure, wetted perimeter in m
pressure

force in N, power in kW

unit power

1b/ft?

Ib/in?, absolute

Ib/in?, gage

unit flow in m3/s/unit width

volume rate of flow in m3/s

unit discharge

any radius in m



o (alpha)
p (beta)

0 (delta)
A (delta)

¢ (epsilon)

radius of pipe in m

gas constant, hydraulic radius in m
Reynolds Number

relative density

slope of hydraulic grade line, slope of
energy line

slope of channel bed

specific gravity

time in s, thickness, viscosity in
Saybolt sec

temperature, torque in Nm, time in s
peripheral velocity of rotating
element in m/s

components of velocity in X, Y and Z
directions

volume in m?, local velocity in m/s,
relative  velocity in  hydraulic
machines in m/s

angle, kinetic-energy correction factor

angle, momentum correction factor

boundary layer thickness in m
flow correction term
surface roughness in m

specific volume = 1/p = m3/kg
shear velocity in m/s = \/%
average velocity in m/s (or as defined)
critical velocity in m/s

weight in N/m? .
weight in N, weight flow in N/s
= pgQ

distance in m

depth in m, distance in m

critical depth in m

normal depth in m

expansion factors for compressible
flow

elevation (head) in m

height of weir crest above channel
bottom, in m

surface tension in N/m, intensity of tensile stress in N/m? (or Pa)

n (eta) eddy viscosity

0 (theta) any angle

u (mu) absolute viscosity in Pa s (or poises)
v (nu) kinematic viscosity m?/s = u/p

7 (pi) dimensionless parameter

p (rho) density kg/m?

o (sigma)

7 (tau) shear stress in N/m? (or Pa)

¢ (phi) speed factor, velocity potential, ratio
¥ (psi) stream function

w (omega) angular velocity in rad/s

Useful Conversion Factors

1 cubic foot = 7.48 U.S. gallons = 28.32 litres = 0.02832 m?
1 USS. gallon = 8.338 pounds of water at 60°F = 3.785 x 107> m?

1 cubic foot per second = 0.646 million gallons per day

= 448.8 gallons per minute = 0.02832 m?/s

1 pound-second per square foot (u) = 478.7 poises = 47.87 Pa s (or kg/ms)

1 square foot per second (v) = 929 square centimeters per second = 0.0929 m?/s

1 horsepower = 550 foot-pounds per second = 0.746 kilowatts

30 inches of mercury = 10.3 m of water = 14.7 pounds per square inch = 101 353 Pa
1 bar = 10° Pa

1 poise = 107! Pa s
1 stokes = 10~ * m?/s
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Chapter One
Properties of Fluids

FLUID MECHANICS and HYDRAULICS

Fluid mechanics and hydraulics represent that branch of applied mechanics dealing with the
behavior of fluids at rest and in motion. In the development of the principles of fluid mechanics,
some fluid properties play principal roles, others only minor roles or no roles at all. In fluid statics,
weight is the important property, whereas in fluid flow, density and viscosity are predominant
properties. Where appreciable compressibility occurs, principles of thermodynamics must be
considered. Vapor pressure becomes important when negative pressures (gage) are involved, and
surface tension affects static and flow conditions in small passages.

DEFINITION of a FLUID

Fluids are substances which are capable of flowing and which conform to the shape of
containing vessels. When in equilibrium, fluids cannot sustain tangential or shear forces. All fluids
have some degree of compressibility and offer little resistance to change of form.

Fluids may be divided into liquids and gases. The chief differences between liquids and gases
are (a) liquids are practically incompressible whereas gases are compressible and often must be so
treated and (b) liquids occupy definite volumes and have free surfaces whereas a given mass of gas
expands until it occupies all portions of any containing vessel.

S.I. UNITS

Three selected reference dimensions (fundamental dimensions) are mass, length and time. In
this book the corresponding fundamental units used will be the kilogram (kg) of mass, the metre
(m) of length and the second (s) of time. All other units may be derived from these. The unit of force
derived from these units is the newton (N). Thus unit volume is the m?, unit acceleration is the
m/s2, unit work is the Nm called the joule (J), and unit pressure is the N/m? called the pascal (P).
Should data be given in other units, they must be converted to S.I. Units before applying them to
the solution of problems.

The unit for force in this system, the newton, is derived from the units of mass and
acceleration. From Newton’s second law,

force in newtons = mass in kilograms x acceleration in m/s® (1)
or

a force of 1 newton accelerates a mass of 1 kilogram at the rate 1 m/s?.
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MASS DENSITY OF A SUBSTANCE (p)

The density of a substance is the mass of unit volume of the substance. For liquids the density
may be taken as constant for practical changes of pressure. The density of water is 1000 kg/m3 at
4°C. See Appendix, Tables 1C and 2 for additional values.

The density of gases may be calculated using the equation of state for the gas.
or B;Ts = R (Boyle’s and Charles’ laws) )
where p; is absolute pressure in pascals, specific volume v, per unit mass m?/kg, temperature T is
the absolute temperature in degrees Kelvin (273 + degrees Celsius) and R is the gas constant in
J/kg K. Since p = 1 v, the above equation may be written

p

“RT =

P

On occasions particularly in dealing with liquids the product pg is used, where g is the
gravitational acceleration 9.81 m/s?> nominally. Formerly this product was called specific weight
and given the symbol w. In S.I. units the prefix specific must be used solely to describe properties
per unit mass and the term specific weight is no longer used.

RELATIVE DENSITY of a BODY (rl dn) [Formerly Specific Gravity]

The relative density of a body is that pure number which denotes the ratio of the mass of a
body to the mass of an equal volume of a substance taken as a standard. Solids and liquids are
referred to water (at 4°C) as standard, while gases are often referred to air free of CO, or hydrogen
(at 0°C and 1 atmosphere = 1.013 x 10° Pa pressure) as standard. For example,

mass of the substance

4)

relative density of a substance =
mass of equal volume water

_ density of substance
~ density of water
Thus if the relative density of a given oil is 0.750, its density is 0.750 (1000 kg/m?3) = 750 kg/m?>.

The relative density of water is 1.00 and of mercury is 13.57. The relative density of a
substance is the same in any system of measures. See Appendix, Table 2.

VISCOSITY of a FLUID

The viscosity of a fluid is that property which
determines the amount of its resistance to a
shearing force. Viscosity is due primarily to
interaction between fluid molecules. 1 Ve ¥

. . . dy

Referring to Fig. 1-1, consider two large, ¥ av
parallel plates at a small distance y apart, the space
between the plates being filled with a fluid. et tase
Consider the upper plate acted on by a constant Fig. 1-1

force F and hence moving at a constant velocity U.

Moving Plate
- F
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The fluid in contact with the upper plate will adhere to it and will move at velocity U, and the fluid
in contact with the fixed plate will have velocity zero. If distance y and velocity U are not too great,
the velocity variation (gradient) will be a straight line. Experiments have shown that force F varies
with the area of the plate, with velocity U, and inversely with distance y. Since by similar triangles,
U/y = dV/dy, we have
AU F dv
Foc—-=Ad—V of — =70 ——
y dy A dy
where © = F/A = shear stress. If a proportionality constant u (mu), called the absolute (dynamic)
viscosity, is introduced,

T

The units of u are Pa s, since = Pas. Fluids which follow the relation of equation (5) are

Pa
(m/s)/m
called Newtonian fluids (see Problem 9).

Another viscosity coefficient, the kinematic coefficient of viscosity, is defined as

absolute viscosity u
mass density p

or y=t ©6)
P

Kinematic coefficient v (nu) =

. m? . P k
The units of v are < since kg?rr?*" = k:jrrzi — r_n;

Viscosities are reported in handbooks as poises and stokes (cgs units) and on occasion as
Saybolt seconds, from viscosimeter measurements. Conversions to S.I. units are illustrated in
Problems 6-8. A few values of viscosities are given in Tables 1 and 2 of the Appendix.

Viscosities of liquids decrease with temperature increases but are not affected appreciably by
pressure changes. The absolute viscosity of gases increases with increase in temperature but is not
appreciably changed due to pressure. Since the density of gases changes with pressure changes
(temperature constant), the kinematic viscosity varies inversely as the pressure. However, from the
equation above, u = pv.

VAPOR PRESSURE

When evaporation takes place within an enclosed space, the partial pressure created by the
vapor molecules is called vapor pressure. Vapor pressures depend upon temperature and increase
with it. See Table 1C for values for water.

SURFACE TENSION

A molecule in the interior of a liquid is under attractive forces in all directions, and the vector
sum of these forces is zero. But a molecule at the surface of a liquid is acted on by a net inward
cohesive force which is perpendicular to the surface. Hence it requires work to move molecules to
the surface against this opposing force, and surface molecules have more energy than interior
ones.
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The surface tension of a liquid is the work that must be done to bring enough molecules from
inside the liquid to the surface to form one new unit area of that surface (Nm/m?). The work is
numerically equal to the tangential contractile force acting across a hypothetical line of unit
length on the surface (Nm).

In most problems of introductory fluid mechanics, surface tension is not of particular
importance. Table 1C gives values of surface tension ¢ (sigma) for water in contact with air.

CAPILLARITY

The rise or fall of a liquid in a capillary tube (or in some equivalent circumstance, such as in
porous media) is caused by surface tension and depends on the relative magnitudes of the
cohesion of the liquid and the adhesion of the liquid to the walls of the containing vessel. Liquids
rise in tubes they wet (adhesion > cohesion) and fall in tubes they do not wet (cohesion

> adhesion). Capillarity is important when using tubes smaller than about 10 mm in diameter.

FLUID PRESSURE

Fluid pressure is transmitted with equal intensity in all directions and acts normal to any
plane. In the same horizontal plane the pressure intensities in a liquid are equal. Measurements of
unit pressures are accomplished by using various forms of gages. Unless otherwise stated, gage or
relative pressures will be used throughout this book. Gage pressures represent values above or
below atmospheric pressure.

UNIT PRESSURE or PRESSURE is expressed as force divided by area. In general,

dP (N
p (N/m? or Pa) = W(mz))

For conditions where force P is uniformly distributed over an area, we have

P(N) P(N)

p(Pa)=——- and p'(bar) = A (m?)

-5
A(m?) x 10

DIFFERENCE in PRESSURE
Difference in pressure between any two points at different levels in a liquid is given by
p» — p1 = pglh, — hy) in Pa (7)

where pg = unit weight of the liquid (N/m?) and h, — h, = difference in elevation (m).
If point 1 is in the free surface of the liquid and h is positive downward, the above equation
becomes

p = pgh (in Pa), a gage pressure (8)
To obtain the bar pressure unit, we use
,_ b _pgh.
gage pressure p’ = 105 = 105 (in bar) )

These equations are applicable as long as p is constant (or varies so slightly with h as to cause
no significant error in the result).
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PRESSURE VARIATIONS in a COMPRESSIBLE FLUID

Pressure variations in a compressible fluid are usually very small because of the small unit
weights and the small differences of elevation being considered in hydraulic calculations. Where
such differences must be recognized for small changes in elevation dh, the law of pressure variation
may be written

dp = — pgdh (10)

The negative sign indicates that the pressure decreases as the altitude increases, with h
positive upward. For applications, see Problems 29-31.

PRESSURE HEAD i

Pressure head h represents the height of a column of homogeneous fluid that will produce a
given intensity of pressure. Then

h (m of fluid) = % (11)

BULK MODULUS of ELASTICITY (E)

The bulk modulus of elasticity (E) expresses the compressibility of a fluid. It is the ratio of the
change in unit pressure to the corresponding volume change per unit of volume.
dp’ Pa

E = ol e e Pa (or N/m?) (12)

COMPRESSION of GASES

Compression of gases may occur according to various laws of thermodynamics. For the same
mass of gas subjected to two different conditions,

D1y D2U2 D1 D2
a1 222 _ MR and = =R (13)
T, T, P Ty p. T,

where p = absolute pressure in Pa, v = volume in m3, M = mass in kg, p = density in kg/m?,
R = gas constant in J/kg K, T = absolute temperature in degrees Kelvin (273 + °C).

FOR ISOTHERMAL CONDITIONS (constant temperature) the above expression (13)
becomes

piv; = pyv, and it PO 2 constant (14)
P2 D2
Also, Bulk Modulus E = p (in Pa) (15)

FOR REVERSIBLE ADIABATIC or ISENTROPIC CONDITIONS (no heat exchanged) the
above expressions become

k
pivf = povs  and <&> = PL _ constant (16)
P2 p2
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T &= 1)k
Also 22 <p—2> 17)
T; D1
and Bulk Modulus E = kp (in Pa) (18)

where k is the ratio of the specific heat at constant pressure to the specific heat at constant volume.
It is known as the isentropic exponent.

Table 1A in the Appendix lists some typical values of R and k. For many gases, R times
molecular weight is about 8314.

PRESSURE DISTURBANCES

Pressure disturbances imposed on a fluid move in waves. These pressure waves move at a
velocity equal to that of sound through the fluid. The velocity, or celerity, in m/s is expressed as

c=.Elp (19)

where E must be in Pa. For gases, this acoustic velocity is

c = Jkp/p = JKRT (20

Solved Problems

1. Calculate the density p and specific volume v, of methane at 40°C and an absolute pressure of
8.3 bar.

Solution:
From Table 1A in the Appendix, R = 96.3 x 5.38 = 518
. p 8.3 x 10°
Densit = =" __ = 51kg/m?
sy P = RT T 518273 + 40) g/m
1 1
Specific volume v, = — = T 0.196 m3/kg
p :

2. 1f 5.6 m? of oil weighs 46 800 N, calculate its density p and relative density.

Solution:
46 800
Weight of Unit Volume = pg = —<F - 8360 N/m?
. pg 8360
Densit =—=—=2852k 2
ensity p 981 g/m
il 852
Relative Density = ———— = 0.852

pwater 1000 ='

3. At 32°C and 2 bar absolute the specific volume v, of a certain gas was 0.74 m?3/kg. Determine
the gas constant R and the density p.

Solution: 5
Since p = L,thenR T .. T w = 485.2
RT pT T (273 + 32)

. 1 1
Density p = == 1.35 kg/m?
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4. (a) Find the change in volume of 1.00 m? of water at 26.7°C when subjected to a pressure
increase of 20 bar. (b) From the following test data determine the bulk modulus of elasticity of
water: at 35 bar the volume was 1.000 m?® and at 240 bar the volume was 0.990 m3.

Solution:
(a) From Table 1C in the Appendix, E at 26.7°C is 2.24 x 10° Pa. Using formula (12),
vdp' 1.00 x 20 x 10°
= - = - = —0.00089 m?
# E 224 x 10° R

(b) The definition associated with formula (12) indicates that corresponding changes in pressure and volume must
be considered. Here an increase in pressure corresponds to a decrease in volume.

dp’ (240 — 35)10°

E=— — = —
dv/v (0.990 — 1.000)/1.000

=205 x 10° Pa = 2.05 GPa

5. A cylinder contains 0.35 m? of air at 50°C and 2.76 bar absolute. The air is compressed to
0.071 m>. (a) Assuming isothermal conditions, what is the pressure at the new volume and
what is the bulk modulus of elasticity? (b) Assuming isentropic conditions, what is the final
pressure and temperature and what is the bulk modulus of elasticity?

Solution:
(a) For isothermal conditions, PiVy = PaU;
Then (2.76 x 10%)0.35 = p; x 10°)0.071 and p; = 13.6 bar

The bulk modulus E = p’ = 13.6 bar.

(b) For isentropic conditions, p,v% = p,v% and Table 1A in the Appendix gives k = 1.40.

Then (276 x 10°)0.35)'4° = (p) x 10°)0.071)'*° and p, = 25.8 bar
The final temperature is obtained by using equation (17)
T, p, \ kDK T 25.8)\0-40/1.40
— = — e == JE— N T — 1 2 — [}
T <p1> 273 1 50) <2.76> 5 = 612 Kelvin = 339°C

The bulk modulus E = kp’ = 1.40 x 25.8 x 10° = 3.61 MPa.

6. From the International Critical Tables, the viscosity of water at 20°C is 0.010 08 poises.
Compute (a) the absolute viscosity in Pa s units. (b) If the relative density at 20°C is 0.998,
compute the value of the kinematic viscosity in m?/s units.

Solution:
The poise is measured in dyne sec/cm?. Since 1 dyne = 1 g cm/s?> = 107> N, we obtain
! poise = -0 NS _ j5-1p
oise = ————— = a
p (10—2)2 mZ s

(a) pin Pa's = 0.010 08/10 = 1.008 x 10~ Pas

L p 1008 x 1078
By vinmfe =" = oo % 1000 L1 X s

7. Convert 15.14 poises to kinematic viscosity in m?/s units if the liquid has relative density 0.964.

Solution:
The steps illustrated in Problem 6 may be taken or an additional factor may be established for water from
1 1 1514 x 107*

=10"% =0 78. yinm?/s = ———— = 1.57 x 1073
0 0.001 078. Hence v in m*/s Tdn = 0964 X

X
10 1000
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8. Convert a viscosity of 510 Saybolt seconds at 60°F to kinematic viscosity v in m?/s units.

Solution:
Two sets of formulas are given to establish this conversion when the Saybolt Universal Viscosimeter is used:

(a) for t <100, pin poises = (0.002 26 — 1.95/t) x rldn
for t > 100, u in poises = (0.002 20t — 1.35/t) x rldn

(b) for t < 100, vinstokes = (0.002 26t — 1.95/1)
fort > 100, v in stokes = (0.002 20t — 1.35/t)

where ¢ = Saybolt second units. To convert stokes (cm?/s) to m?/s units, divide by (100)? or 10*.

1.35
Using groub (b), and since t > 100, v = (0.002 20 x 510 — 51—0> x 107* = 11.19 x 1073 m?%/s.

9. Discuss the shear characteristics of the fluids IDEAL; BOLID

for which the curves have been drawn in Fig.
1-2.

REAL SOLID

Solution:

(a) The Newtonian fluids behave according to the law
7 = u(dV/dy), or the shear stress is proportional to
the velocity gradient or rate of shearing strain. Thus
for these fluids the plotting of shear stress against
velocity gradient is a straight line passing through the
origin. The slope of the line determines the viscosity. -

(b) For the “ideal” fluid, the resistance to shearing Velocity Gradient gll —
deformation is zero, and hence the plotting coincides o
with the x-axis. While no ideal fluids exist, in certain
analyses the assumption of an ideal fluid is useful and
justified.

(c) For the “ideal” or elastic solid, no deformation will occur under any loading condition, and the plotting
coincides with the y-axis. Real solids have some deformation and, within the proportional limit (Hooke’s law),
the plotting is a straight line which is almost vertical.

(d) Non-Newtonian fluids deform in such a way that shear stress is not proportional to rate of shearing
deformation, except perhaps at very low shear stresses. The deformation of these fluids might be classified as
plastic.

(e) The “ideal” plastic material could sustain a certain amount of shearing stress without deformation, and
thereafter it would deform in proportion to the shearing stress.

NEWTONIAN FLUID
IDEAL FLUID

Viscous Shear Stress r —»

Fig. 1-2

10. Refer to Fig. 1-3. A fluid has absolute lte———— 1125 m)s
viscosity 0.048 Pa s and relative density 4

0.913. Calculate the velocity gradient and
the intensity of shear stress at the boundary
and at points 25 mm, 50 mm, and 75 mm
from the boundary, assuming (a) a straight
line velocity distribution and (b) a parabolic
velocity distribution. The parabola in the
sketch has its vertex at A. Origin is at B.

Fig. 1-3



