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Preface

In expositions of the elements of topology it is customary for homology to be
given a fundamental role. Since Poincaré, who laid the foundations of topo-
logy, homology theory has been regarded as the appropriate primary basis
for an introduction to the methods of algebraic topology. From homotopy
theory, on the other hand, only the fundamental group and covering-space
theory have traditionally been included among the basic initial concepts.
Essentially all elementary classical textbooks of topology (the best of which
is, in the opinion of the present authors, Seifert and Threlfall's A Textbook of
Topology) begin with the homology theory of one or another class of com-
plexes. Only at a later stage (and then still from a homological point of view)
do fibre-space theory and the general problem of classifying homotopy classes
of maps (homotopy theory) come in for consideration. However, methods
developed in investigating the topology of differentiable manifolds, and inten-
sively elaborated from the 1930s onwards (by Whitney and others), now
permit a wholesale reorganization of the standard exposition of the funda-
mentals of modern topology. In this new approach, which resembles more
that of classical analysis, these fundamentals turn out to consist primarily of
the elementary theory of smooth manifolds,t homotopy theory based on
these, and smooth fibre spaces. Furthermore, over the decade of the 1970s it
became clear that exactly this complex of topological ideas and methods were
proving to be fundamentally applicable in various areas of modern physics.
It was for these reasons that the present authors regarded as absolutely

t Evidently the beginning ideas of topology, which can be traced back to Gauss, Riemann and
Poincare, actually arose, historically speaking, in this order. However, at the time of Gauss and
Riemann, a correspondingly organized conceptual basis for a theory of topology was unrealizable.
[t was Poincaré who, in creating the homology theory of simplicial complexes, was able to provide
a quite different, precise foundation for algebraic topology.
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essential material for a training in topology, in the first place precisely the
theory of smooth manifolds, homotopy theory, and fibre spaces, and incor-
porated this subject matter in Part II of their textbook Modern Geometry. It
is assumed in the present text that the reader is acquainted with that material.

On the other hand, the solution of the more complex problems arising both
within topology itself (the computation of homotopy groups, the classification
of smooth manifolds, etc.) and in the numerous applications of the algebro-
topological machinery to algebraic geometry and complex analysis, requires
a very extensive elaboration of the methods of homology theory. There is in
the contemporary topological literature a complete lack of books from which
one might assimilate the complex of methods of homology theory useful in
applications within topology. It is part of the aim of the present book to
remedy this deficiency.

In expounding homology theory we have, wherever possible, striven to
avoid using the abstract terminology of homological algebra, in order that
the reader continually remain cognizant of the fact that cycles and boundaries,
and homologies between them, are after all concrete geometrical objects. In
a few places, for instance in the section devoted to spectral sequences, this
self-imposed restriction has inevitably led to certain defects of exposition.
However, it is our experience that the usual expositions of the machinery of
modern homological algebra lead to worse defects in the reader’s understand-
ing, essentially because the geometric significance of the material is lost from
view. Certain fundamental methods of modern algebraic topology (notably
those associated with spectral sequences and cohomology operations) are
described without full Justification, since this would have required a substan-
tial increase in the volume of material. It must be remembered that those
methods are based exclusively on the formal algebraic properties of the
algebraic entities with which they are concerned, and in no way involve their
explicit geometric prototypes whence they derive their raison d’étre. In the
final chapter of the book the methods of aigebraic topology are applied to the
investigation of deep properties of characteristic classes and smooth structures
on manifilds. It is the intention of the authors that the present monograph
provide a path for the reader giving access to the contemporary topological
literature.

A large contribution to the final version of this book was made by the
editor, Victor Matveevich Bukhshtaber. Under his guidance several sections
were rewritten, and many of the proofs improved upon. We thank him for
carrying out this very considerable task.

Translator’s acknowledgements. Thanks are due to G. C. Burns and Abe
Shenitzer for much encouragement, to several of my colleagues (especially
Stan Kochman) for technical help, and to Eadie Henry for her advice, superb
typing, and forbearance.
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CHAPTER 1
Homology and Cohomology.
Computational Recipes

§1. Cohomology Groups as Classes of Closed
Differential Forms. Their Homotopy Invariance

Among the most important of the homotopy invariants of a manifold are its
homology and cohomology groups, which we have already encountered (in
§819.3, 24.7, 25.5 of Part II), and which we shall now expound systematically.
There are several (equivalent) ways of defining the homology groups of a
manifold; to begin with we give the definition (of the cohomology groups) in
terms of differential forms on the manifold (as in §25.5 of Part 1I). Thus we
shall initially be considering closed differential forms of rank k on our mani-
fold M" (where as usual the index n indicates the dimension of the manifold),
given locally by
w= Y a.., d" A Add  do=0. n
(Recall that a differential k-form is closed if dw = 0, and is exact if = dow’'
for some form o’ of rank k — 1, and also that d(dw’') = 0, so that the exact
forms figure among the closed ones (see §25.2 of Part I).)

1.1 Definition.t The kth cohomology group H*(M"; R) (actually a real vector
space) of a manifold M" is the quotient group of the group (vector space) of
all closed forms of rank k on M" by its subgroup (linear subspace) of exact

t In the sequel we shall give several different definitions of the homology and cohomology groups
with coeflicients from various groups. In view of the fact that these definitions all yield essentially
the same concept (see §§6, 14 below), we shall refrain from introducing indices to indicate any
particular version of the concept as it arises in the various contexts.
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forms. Thus the elements of H*(M"; R) are the equivalence classes of closed
k-forms where two forms are taken as equivalent if they differ by an exact form:

W, ~ W, means w; —w,; =do'. (2)

The following result gives the simplest property of the (Oth) cohomology
groups.

1.2. Proposition. For any manifold M" the Oth cohomology group H°(M"; R) is
the vector space whose dimension q is equal to the number of connected com-
ponents of the manifold.

Proor. A form of rank zero is just an ordinary scalar function f(x) on the
manifold. If such a form is closed. then df(x) =0, so that f(x) is locally
constant, and therefore constant on each connected component of the mani-
fold. Hence each closed O-form on M" can be identified with a sequence of ¢
constants, one for each of the ¢ components of the manifold. In view of the
fact that there are no exact 0-forms, the proposition now follows. O

Any smooth map f: M, - M, between manifolds determines a map
wh> f*(w), the “pullback”, of forms w on M, to forms f*(w) on M,, satis-
fying df *(w) = f*(dw)(see §§22.1,25.2 of Part I). Hence each such map f deter-
mines a map (in fact a homomorphism, or better still a linear transformation)

S*: HYM,; R) > H*(M,; R) (3)

between the cohomology groups (since under f* closed forms are sent to
closed forms, and exact to exact).

1.3. Theorem. Let f: M, > M,, f,: M, - M, be two smooth maps of mani-
Jolds. If f is homotopic to f, then the corresponding homomorphisms f;* and
3 of the cohomology groups, coincide:

fi¥ = f* H{(M,; R) > HYM,; R).
PRrOOF. Let F: M, x I — M, be a smooth homotopy between f; and f,, where
listheinterval 1 <t < 2, F(x, 1) = fi(x),and F(x, 2) = f,(x). In terms of local

co-ordinates on M; x I of theform (x',..., x", 1) = (x, 1), where x!, ..., x"are
local co-ordinates on M, any differential form Q of rank k on M, x [ can be

written as
Q=w, + w, Adt, Qf,_,, = w,(t,), 4)

where w; is a form of rank k which does not involve the differential dt (in the
sense that all of its components of the form

bi,...ik-,

are identically zero), and w, is a form of rank (k — 1) with the same property.
Let w be any form of rank k on the manifold M,, and write F*(w) = Q =

dxi* A AdxbuadL 0 < <y,
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w; + w, A dt, with 0, and w, as just described, 1.e. given locally by

Wy = Z ai,...ik_,(x, f)dx“ Ao Adxts
i< <f_y

W, = Z by, (5 0 dxIt A oo A dxx,
Jr<r <

We now define (locally) a form DQ of rank (k — 1) on the manifold M, x I,
by means of the formula

2
b=} (J (X0 dt)a‘x" <o A dxBen
i t

<<y oy

2
(e f o, di. )
1

At this point we require a certain property of the form DQ, to establish which
we now interrupt our proof.

1.4. Lemma. The following formula holds (cf. the defining condition for an
“algebraic homotopy™ in §2(5) below):

d(D(F*(w))) £ D(d(F*(w))) = f3(®) — f*(w). (6)

PROOF. We shall show that in fact for any form Q on M, x I, the following

formula is valid:
dD(Q) £ D(dQ) = Q=5 — Q. )

To this end we calculate dDQ and DdQ, with Q = w, + w, A dt as before.
Locally we have (by definition of the operator d and its various properties—
see §25.2 of Part I)

2
aQ =y ¥ (L %dt)dx’ Adx A A dxBen,

i< <y
On the other hand
DdQ = D{dw,) + D(dcoz A dt)

=D( Z Z “ "‘dvc“/\dx“/\ A dxix
i<

]

ob, . .
+ Z —%?"—"dt/\dx“/\m/\dx"‘)

Ji<

+D< Z z ' —Uksl JxP A dx A e A dxiee /\dt)
iy <-e<ip, p
= Y (b i (x2- bj‘”_jk(x, D)dx? A -+ A dx* + (— 1)1 dDQ

Ji< <y
’

=Q|.; — Q|x=1 + (= l)k_'l dDQ,
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whence the desired formula (7). Putting Q = F*(w), so that Q|,_, = f*{w),

Ql;-, = fi*(w), formula (7) then yields (6), completing the proof of the lemma.
O

We now return to the proof of the theorem. Let w be any closed form on
M, (so that dw = 0). Then, since dF*(w) = F*(dw) = 0, formula (6) yields

dDF*(w) = f¥(w) — fi*(w),

so that the difference of the forms f*(w) and f*(w) is exact. Since this is
by definition equivalent to the statement that the homomorphisms
fi*, f¥ HYM,; R) > H*(M,; R) coincide, the proof of the theorem is
complete. O

Recall (from §17.4 of Part IIj that two manifolds M,, M, are said to
be homotopically equiralent if there exist (smooth) maps f: M, - M, and
g: M, > M,, such that the composites gf: M, - M, and fg: M, > M,
are homotopic to the respective identity maps

M, > M, (x—x), M, - M, (y—y)

(Thus, for example, Euclidean space R", as also the disc
Dn - { Z (x:)2 S Rz},
2=1

is homotopically equivalent to the one-point space, or what is equivalent, is
contractible (over itself to a point), meaning that the identity map R" — R"
(x+ x) is homotopic to a constant map (R" - {0}).)

1.5. Theorem. Homotopically equivalent manifolds have isomorphic cohomo-
logy groups.

Proor. Let M,, M, be homotopically equivalent manifolds, and let
fiM; > M,, g: M, — M, be maps satisfying the defining conditions (see
above) of homotopy equivalence. Consider the corresponding homo-
morphisms f*: H*(M,; R) > H"M; R) and g*: H(M,; R) - H*(M,; R).
Since the maps fg and gf are homotopic to the appropriate identity maps,
it follows from Theorem 1.3 that the homomorphisms (fg)* = g*f* and
(af)* = f*g* are actually the corresponding identity homomorphisms:

1 =g*f* Hk(Mz) d Hk(Mz),
L = f*g* HYM,) » H(M,).

Hence f* and g* are (mutually inverse) isomorphisms, and the theorem is
proved. O

Remark. This theorem suggests a way of extending the definition of the
cohomology groups to any topological space X with the property that there
is a2 manifold M in which it can be embedded (M = X) which “contracts” to
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Figure 1

it, in the sense that the inclusion map i: X — M is a homotopy equivalence
(sothat thereisamap f: M — X with the property that if and fi are homotopic
to the appropriate identity maps). For such spaces X we simply define

HYX; R) = HYM; R). (8)

Thus, for instance, the “figure eight”, while not a manifold, will now, according
to this definition, have the same cohomology groups as R*\{Q,, Q,}, the
plane with two points removed (see Figure 1).

1.6. Corollary. The cohomology groups of Euclidean space R" (and of the disc
D") are isomorphic to those of a one-point space. Thus H*(R") is trivial for k > 0,
while H°(R") ~ R, the one-dimensional real vector space.

This fact leads almost immediately to the so-called “Poincaré lemma’:
Locally, i.e. in some neighbourhood of any point Q of a manifold M", every closed
Jorm w (dw = 0) of rank > 0 is exact: @ = dw'. To see this, we have merely to
choose as the neighbourhood any disc D" = {} 7_, (x* — x2)? < &} with centre
Q, wholly contained in some local co-ordinate neighbourhood (i.e. chart) of
the manifold, and then apply the conclusion of Corollary 1.6, to the effect that
H*(D") = O for k > 0.)

The reader will no doubt recall the case k = 1 of the Poincaré lemma from
courses in analysis: Given a 1-form w = f, dx* with dw =0 (ie. &f,/éx' =
df:/0x* in local notation), we have w = dF where F(P) = |& fi dx*, the (path-
independent) line integral of the form along any smooth path in the disc from
a fixed point Q to the variable point P.

What are the cohomology groups of the circle §'?

1.7. Propesition. The cohomology groups of the circle S* are as follows:
HYS; R)=0 for k>1I;
HY(S!; R)~ R; H(SL, R ~ R

PRrOOF. The triviality of the cohomology groups of S! for k > 1 is immediate
from the fact that dim S* = 1. That H°(S') ~ R follows from Proposition 1.2
and the connectedness of S*. Thus we have only to show that H!(S!) ~ R.
To this end we introduce on S* the usual local co-ordinate ¢, where for all
integers n the numbers ¢ + 2zn represent the same point of the circle as ¢. A
form of rank 1 is then given by @ = a(¢) de, where a(¢) is a periodic function
on R:a(e + 2n) = a(g). We always have dw = 0, again since dim S! = 1.

©)
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When will w = a(¢) dg be exact? Exactness in this context means precisely
that a(e) de = dF, where F is a periodic function, or equivalently that the
function defined by

F(p) = J'w a(y) dy + const.
0

is periodic of period 27 or, in yet other words, that fs.w = 0.

We see theerore that a 1-form o = a(¢)de on S' is exact precisely if
fsiw =0, ie. [§"a(p) dp = 0. Hence two 1-forms w, = a(¢)de and w, =
b(y) do determine the same cohomology class if and only if

2n 2n
J w, =j w,, e f a(p) de = f b(o) do,
St St 1] V]

so that the cohomology classes are in (appropriate) one-to-one correspon-
dence with the possible values of such integrals, i.e. with R. This completes
the proof. 0

1.8. Corollary. The cohomology groups of the Euclidean plane with one point
removed R*\Q (or an annulus), being (by Theorem 1.5) isomorphic to those of
a circle, are as follows:

HYR\Q)=0, k>1; H'(R*\Q)~H°(R*\Q)~R. (10)

Remark. We indicate another method for calculating the first cohomology
group H'(S') of the circle. With each 1-form w(@) = a(p) do on the circle, we
associate its average & (also a form) defined by

1 2x 1 2z
d):-z—n-J‘o w((p-*-f)dt:i;[‘[) a(<p+t)dt:|d(p.

1.9. Proposition. The Sforms w and & are cohomologous.

Proor. For each fixed 7 the form w(p + 1) is induced from @ via the map
¢ + t— @ of the circle onto itself. Since such a map is homotopic to the
identity, we have (by Theorem 1.3) that w(e) ~ w(¢ + 1). For an arbitrary
Riemann sum for the form & (as an integral) we shall therefore have

1 1

I 2 w(p + 1;)Ar; ~ w(w)'ﬂ Z‘: At = w(p). (1)

Since any Riemann sum for & is thus cohomologous to a, it follows that &
will also be cohomologous to w, as required. O

Continuing with our remark, we note next that @ is given by

2=
(@) =adp, where a=const. = ;;f a(y) dy,
0



§1. Cohomology Groups as Classes of Closed Differential Forms

n 2x+o
o) = EIEU alp + r)dr] do = EI;U a(y) dw] do
. 0 4
1 2n
- 2—[ f a¥) dw:l do.
T 0

(Thus the form @(¢) is, as they say, “rotation-invariant™ @(¢ + @4) = A(9).)
From this and the above proposition, we see that the correspondence w+— @
essentially associates (in what is clearly an appropriate one-to-one manner) a
real number, namely %, with each 1-form w on the circle, whence H!(S!) ~ R.
In the sequel we shall use a generalization of this method to calculate the
cohomology groups of compact homogeneous spaces.

since

1.10. Proposition. An orientable, closed, Riemannian manifold M" of dimension
n has non-trivial nth cohomology group H"(M").

PROOF. As usual we denote by Q the volume element on M; thus locally

= /lgl dx' A -+ A dx",

where g = det(g;;), (g;;) being the Riemannian metric with which we are
assuming our manifold endowed. If the local co-ordinates on the charts of M"
are all arranged to agree in orientation (i.e. so that the Jacobians of the
transition functions on the regions of overlap are all positive), then (see Part
I, §18.2) Q can be regarded as a differential form of rank n on M", which can
therefore be integrated over M, yielding its volume [un Q> 0.

Since M" has dimension n and dQ has rank n + 1, we must of course have
dQ = 0,i.e. Qis closed. Il Q were in fact exact, say Q = dw, then by the general
Stokes formula (Part I, §26.3) we should have

j Q=J‘ dw:J w =0, (12)
Mn n cMn

since by hypothesis M" is without boundary. Hence we have found a closed
n-form which is not exact (namely Q), whence the proposition. ]

Remark. It will be shown below (in §3) that on the other hand for every
non-orientable closed manifold M” (for example, M? = RP?, the projective
plane) the group H"(M"; R) is trivial. (Of course, the above proof fails for such
manifolds since the volume element does not behave like a differential form
under co-ordinate changes with negative Jacobian.)

For any manifold M” we write

= X Hor), (13)
the direct sum of (all) the cohomology groups of M. The following proposition

shows that the wedge (or exterior) product of forms can be used to define a
“multiplicative” operation on H*(M), thereby turning it into a ring.
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L.11. Proposition. For any closed forms w,, w, on M", the forms w, A @, and
(w, + dw') A w, are also closed, and moreover cohomologous.

ProoF. By Leibniz’ formula (see Part I, Theorem 25.2.4) we have
o' Awy)=do' Awy,+ @ Adw, =do' A w,. (14)

Hence
(g +dw') A Wy = 0y A 0, + d(0 A ©,),

so that w,; A w, and (w, + dw’) A w, are cohomologous, as required. (The
closure of w; A w, is immediate from Leibniz’ formula.) (]

In view of this proposition the exterior-product operation on H*(M) is well
defined. It is easy to see that with this as its multiplicative operation H*(M)
becomes a ring (in fact, an algebra), called the cohomology ring of the manifold
M". Note that if w, € H*(M"), w, € HY(M"), then v, w, € H**Y(M"), and that
the multiplication in H*(M) is skew-commutative in the sense that (see Part
I, Lemma 18.3.1)

w0, = (1w, w,. (15)

We shall now describe the geometric significance of the cohomology
groups. (More precise considerations will be left to later sections.)

Given any manifold M" we define “periods”, or “integrals over cycles”, of
any closed form w (of rank k) on M", as follows. As a preliminary, we define
a cycle in M" to be a pair (M*, f), where M* is any k-dimensional manifold
(of dimension equal to the rank of w) and f: M* - M" is any smooth map.

1.12. Definition. The period of a k-form w on M” with respect to a cycle (M*, f)
is the integral {y f*(w).

Let N**! be any oriented manifold-with-boundary. Its boundary éN**! =
M?* say, is then a closed, oriented manifold (which may have several connected
components). We define a film (see Appendix 2 for an explanation of this
name) to be a map F: N**! - M" from the manifold-with-boundary N**! o
the manifold M" under consideration.

1.13. Theorem

(i) The period of an exact form w on M" with respect to any cycle (M*, f) is
zero.

(i) The period of a closed form w on M" is zero with respect to any cycle (M*, f)
in M" which is the boundary of a film (N**', F) (i.e. is such that M* =
ON**! and F,p = f).

PROOF. (1) Writing w = dw', we have by the general Stokes formula

fro=1 [*do)= J d(f*w’) = Sra’ =0, (16)
Mk Mk Mk

IM*
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where the last equality is a consequence of the fact that the manifold M* is
without boundary.

(ii) Since M* is the boundary of N**! (with orientation induced from that
of N**), and F|,. = f, the general Stokes formula yields

f"‘w:j dF*(w)=J F*(dw) = 0, (17
Mk Nk+1 N'(’l
where in the last equality we have used the hypothesis dw = 0. O

We note without proof the following important fact (a partial converse to
part (i) of the above theorem): If the period of a closed form is zero with respect
to every cycle, then the form is exact. (See §14 below.)

Example. For the n-dimensional sphere S" we have H*(S") = 0 for k # 0, n.

PROOF. For k > niit s trivial that H*(S") = 0, so we may assume 0 < k < n. If
(M*, f)is any cycle in S" (where 0 < k < n), then by Sard’s theorem (Theorem
10.2.1 of Part IT), there are certainly points of S” outside f(M*). If Q € §" is
such a point, then the cycle (M*, f) may be regarded as a cycle in $"\Q = R".
Now, essentially by Poincaré's lemma (see above), every closed form on R" is
exact, so that by Theorem 1.13(i) the period of every closed k-form with respect
to the cycle (M, f) is zero. Since the cycle (M*, f) was arbitrary, it follows
from the above-mentioned partial converse of Theorem 1.13(i) that every
closed k-form on S" is exact, whence (for 0 < k < n) H*(S") = 0. O

This fact can also be established by means of an argument analogous to
that used above for calculating H'(S") (in the remark following Corollary 1.8):
one first shows that each cohomology class of closed k-forms on $” contains
a form w invariant under the group SO(n + 1) of (proper) isometries of S".-
Such a form is of course determined by its components at a single point of
the sphere, and these components will be invariant under the stationary
group SO(n) = SO(n + 1) fixing that point (i.e. under the stabilizer of that
point). We leave it to the reader to deduce that if 0 < k < n then these
components must all be zero. (Consider to begin with the case of a 1-form on
§% = R?U {0} whose components at the origin of R are rotation-invariant.)

We shall now show how an analogue of this method can be used for
calculating the cohomology groups of Lie groups and symmetric spaces.

Recall (from §6 of Part II) that a homogeneous space (see §5.1 of Part II)
M of a Lie group G, with isotropy group H, is said to be symmetric if there is
an involutory Lie automorphism of G, i.e. a Lie automorphism I: G — G such
that I = 1 and I|, = 1 (so that the automorphism I fixes H pointwise); it is
also required that all points fixed by / that are sufficiently close to the
identity element of G, should lie in the subgroup H. Corresponding to each
point x of such a manifold M there is then a naturally determined “symmetry”
s, of M, whose effect on an arbitrary point y of M is defined as follows: since



