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Preface to the Second Edition

This second edition of “Categories Work™ adds two new chapters on
topics of active interest. One is on symmetric monoidal categories and
braided monoidal categories and the coherence theorems for them—items
of interest in their own right and also in view of their use in string theory in
quantum field theory. The second new chapter describes 2-categories and
the higher-dimensional categories that have recently come into promi-
nence. In addition, the bibliography has been expanded to cover some of
the many other recent advances concerning categories.

The earlier 10 chapters have been lightly revised, clarifying a number
of points, in many cases due to helpful suggestions from George Janelidze.
In Chapter III, I have added a description of the colimits of representable
functors, while Chapter IV now includes a brief description of character-
istic functions of subsets and of the elementary topoi.

Dune Acres, March 27, 1997 Saunders Mac Lane



Preface to the First Edition

Category theory has developed rapidly. This book aims to present those
ideas and methods that can now be effectively used by mathematicians
working in a variety of other fields of mathematical research. This occurs
at several levels. On the first level, categories provide a convenient con-
ceptual language, based on the notions of category, functor, natural
transformation, contravariance, and functor category. These notions are
presented, with appropriate examples, in Chapters I and II. Next comes
the fundamental idea of an adjoint pair of functors. This appears in many
substantially equivalent forms: that of universal construction, that of direct
and inverse limit, and that of pairs of functors with a natural isomorphism
between corresponding sets of arrows. All of these forms, with their inter-
relations, are examined in Chapters III to V. The slogan is “Adjoint func-
tors arise everywhere.”

Alternatively, the fundamental notion of category theory ‘is that of
a monoid—a set with a binary operation of multiplication that is associa-
tive and that has a unit; a category itself can be regarded as a sort of
generalized monoid. Chapters VI and VII explore this notion and its gen-
eralizations. Its close connection to pairs of adjoint functors illuminates
the ideas of universal algebra and culminates in Beck’s theorem char-
acterizing categories of algebras; on the other hand, categories with a
monoidal structure (given by a tensor product) lead inter alia to the study
of more convenient categories of topological spaces.

Since a category consists of arrows, our subject could also be described
as learning how to live without elements, using arrows instead. This line of
thought, present from the start, comes to a focus in Chapter VIII, which
covers the elementary theory of abelian categories and the means to prove
all of the diagram lemmas without ever chasing an element around a
diagram.

Finally, the basic notions of category theory are assembled in the
last two chapters: more exigent properties of limits, especially of filtered
limits; a calculus of “ends”; and the notion of Kan extensions. This is the
deeper form of the basic constructions of adjoints. We end with the obser-
vations that all concepts of category theory are Kan extensions (§7 of
Chapter X).



viit Preface to the First Edition

I have had many opportunities to lecture on the materials of these
chapters: at Chicago; at Boulder, in a series of colloquium lectures to the
American Mathematical Society; at St. Andrews, thanks to the Edinburgh
Mathematical Society; at Zurich, thanks to Beno Eckmann and the For-
schungsinstitut fiir Mathematik; at London, thanks to A. Frohlich and
Kings and Queens Colleges; at Heidelberg, thanks to H. Seifert and
Albrecht Dold; at Canberra, thanks to Neumann, Neumann, and a Ful-
bright grant; at Bowdoin, thanks to Dan Christie and the National Science
Foundation; at Tulane, thanks to Paul Mostert and the Ford Foundation;
and again at Chicago, thanks ultimately to Robert Maynard Hutchins and
Marshall Harvey Stone.

Many colleagues have helped my studies. I have profited much from a
succession of visitors to Chicago (made possible by effective support from
the Air Force Office of Scientific Research, the Office of Naval Research,
and the National Science Foundation): M. André, J. Bénabou, E. Dubuc,
F.W. Lawvere, and F.E.J. Linton. I have had good counsel from Michael
Barr, John Gray, Myles Tierney, and Fritz Ulmer, and sage advice from
Brian Abrahamson, Ronald Brown, W.H. Cockcroft, and Paul Halmos.
Daniel Feigin and Geoffrey Phillips both managed to bring some of
my lectures into effective written form. My old friend, A.H. Clifford,
and others at Tulane were of great assistance. John MacDonald and
Ross Street gave pertinent advice on several chapters; Spencer Dickson,
S.A. Huq, and Miguel La Plaza gave a critical reading of other material.
Peter May’s trenchant advice vitally improved the emphasis and arrange-
ment, and Max Kelly’s eagle eye caught many soft spots in the final
manuscript. [ am grateful to Dorothy Mac Lane and Tere Shuman for
typing, to Dorothy Mac Lane for preparing the index, and to M.K.
Kwong for careful proofreading—but the errors that remain, and the
choice of emphasis and arrangement, are mine.

Dune Acres, March 27, 1971 Saunders Mac Lane
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Introduction

Category theory starts with the observation that many properties of
mathematical systems can be unified and simplified by a presentation
with diagrams of arrows. Each arrow f : X— Y represents a function;
that is, a set X, a set Y, and a rule x+> f x which assigns to each element
xe X an element fxe Y; whenever possible we write fx and not f(x),
omitting unnecessary parentheses. A typical diagram of sets and func-

tions is
Y
7N
X ,, Z;

it is commutative when h is h=g~ f, where g- f is the usual composite
function g- f : X—Z, defined by x> g(f x). The same diagrams apply
in other mathematical contexts; thus in the “category” of all topological
spaces, the letters X, Y,and Z represent topological spaces while f, g,and h
stand for continuous maps. Again, in the “category” of all groups,
X, Y, and Z stand for groups, f, g, and h for homomorphisms.

Many properties of mathematical constructions may be represented
by universal properties of diagrams. Consider the cartesian product
X x Yoftwo sets, consisting as usual of all ordered pairs {x, y)> of elements
xe X and ye Y. The projections {x, y>i—x, {x, y>+y of the product
on its “axes” X and Y are functions p: X x Y— X, q: X xY— Y. Any
function h: W— X x Y from a third set W is uniquely determined by its
composites peh and g-h. Conversely, given W and two functions
fand g as in the diagram below, there is a unique function h which makes
the diagram commute; namely, hw = (f w,gw) for each w in W:

w
O
Xe——XxY——Y

Vi ;
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Thus, given X and Y, {p, ¢) is “universal” among pairs of functions from
some set to X and Y, because any other such pair { f, g) factors uniquely
(via h) through the pair {p, g). This property describes the cartesian
product X x Y uniquely (up to a bijection); the same diagram, read in
the category of topological spaces or of groups, describes uniquely the
cartesian product of spaces or the direct product of groups.

Adjointness is another expression for these universal properties.
If we write hom(W, X) for the set of all functions f: W—X and
hom({U, V),{X, Y)) for the set of all pairs of functions f:U-—X,
g:V—Y, the correspondence h—(ph,qh)={f,g)> indicated in the
diagram above is a bijection

hom(W, X x Y)~hom({W, W), (X,Y)).

This bijection is “natural” in the sense (to be made more precise later)
that it is defined in “the same way” for all sets W and for all pairs of sets
(X, Y) (and it is likewise “natural” when interpreted for topological
spaces or for groups). This natural bijection involves two constructions
on sets: The construction Wi W, W which sends each set to the diagonal
pair AW =W, W), and the construction (X, Y>> X x Y which sends
each pair of sets to its cartesian product. Given the bijection above,
we say that the construction X x Y is a right adjoint to the construction 4,
and that 4 is left adjoint to the product. Adjoints, as we shall see, occur
throughout mathematics.

The construction “cartesian product” is called a “functor” because it
applies suitably to sets and to the functions between them; two functions
k:X—X and t: Y—> Y have a function k x ¢ as their cartesian product:

kxt: XxY—=X'xY, {(x,yy—=Ckx,ty).

Observe also that the one-point set 1 = {0} serves as an identity under the
operation “cartesian product”, in view of the bijections

IxXSHXEXx1 1)

given by 1{0, x> =x, p{(x,0) =x. )

The notion of a monoid (a semigroup with identity) plays a central
role in category theory. A monoid M may be described as a set M to-
gether with two functions

UWMxM—-M, n:1-M 2)
such that the following two diagrams in # and # commute:
MxMxM2E M x M IxMZZL oM x M~ M

T R

MxM £ M, M M M

il
I
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here 1 in I x u is the identity function M— M, and 1 in 1 x M is the one-
point set 1 = {0}, while 4 and ¢ are the bijections of (1) above. To say
that these diagrams commute means that the following composites are
equal:

po(lxp)y=po(ux1), pe(px1l)y=2, po(lxn)=g.

These diagrams may be rewritten with elements, writing the function u
(say) as a product u(x,y) = xy for x,y € M and replacing the function »
on the one-point set 1 = {0} by its (only) value, an element 7(0)=ue M.
The diagrams above then become

(X, py Zp——x, yz)> 0, XD u, x> {x, ude—A(x.0)
{xy, 2 (xy)z=x(y2), X = ux, Xu = x.

They are exactly the familiar axioms on a monoid, that the multiplica-
tion be associative and have an element u as left and right identity.
This indicates, conversely, how algebraic identities may be expressed by
commutative diagrams. The same process applies to other identities:
for example, one may describe a group as a monoid M equipped with
a function { : M —M (of course, the function x+ x~!) such that the
following diagram commutes:

M2 MxMZSMxM XX, X)—{x, x~ )

| - [

1 M O— u = xx7!,

here : M—M x M is the diagonal function x—=<{x,x> for xe M,
while the unnamed vertical arrow M — 1 = {0} is the evident (and unique)
function from M to the one-point set. As indicated just to the right,
this diagram does state that { assigns to each element x € M an element
x~! which is a right inverse to x.

This definition of a group by arrows g, #, and ¢ in such commutative
diagrams makes no explicit mention of group elements, so applies
to other circumstances. If the letter M stands for a topological space
(not just a set) and the arrows are continuous maps (not just functions),
then the conditions (3) and (4) define a topological group — for they
specify that M is a topological space with a binary operation p of multi-
plication which is continuous (simultaneously in its arguments) and
which has a continuous right inverse, all satisfying the usual group
axioms. Again, if the letter M stands for a differentiable manifold (of



4 Introduction

class C*) while 1 is the one-point manifold and the arrows g, #, and {
are smooth mappings of manifolds, then the diagrams (3) and (4) become
the definition of a Lie group. Thus groups, topological groups, and Lie
groups can all be described as “diagrammatic” groups in the respective
categories of sets, of topological spaces, and of differentiable manifolds.

This definition of a group in a category depended (for the inverse
in (4)) on the diagonal map 6: M—M x M to the cartesian square
M x M. The definition of a monoid is more general, because the cartesian
product x in M x M may be replaced by any other operation [] on two
objects which is associative and which has a unit 1 in the sense prescribed
by the isomorphisms (1). We can then speak of a monoid in the system
(C, 3, 1), where C is the category, [] is such an operation, and 1 is its
unit. Consider, for example, a monoid M in (Ab, ®, Z), where Ab is
the category of abelian groups, x is replaced by the usual tensor product
of abelian groups, and 1 is replaced by Z, the usual additive group of
integers; then (1) is replaced by the familiar isomorphism

Z®X=X=X®Z, X an abelian group.

Then a monoid M in (Ab, ®, Z) is, we claim, simply a ring. For the given
morphism u: M®M—M is, by the definition of ®, just a function
M xM—M, call it multiplication, which is bilinear; i.e., distributive
over addition on the left and on the right, while the morphism n: Z—M
of abelian groups is completely determined by picking out one element
of M; namely, the image u of the generator 1 of Z. The commutative
diagrams (3) now assert that the multiplication y in the abelian group M
is associative and has u as left and right unit — in other words, that M
is indeed a ring (with identity = unit).

The (homo)-morphisms of an algebraic system can also be described
by diagrams. If (M, u, n)> and (M’, it’, n’> are two monoids, each described
by diagrams as above, then a morphism of the first to the second may
be defined as a function f: M — M’ such that the following diagrams
commute:

M MxM—*- M 1——M

PO

M xM—" oM, 1—2L M.

In terms of elements, this asserts that f(xy)=(fx) (fy) and fu=u,
with u and v’ the unit elements; thus a homomorphism is, as usual, just
a function preserving composite and units. If M and M’ are monoids
in (Ab, ®,Z), that is, rings, then a homomorphism [ as here defined is
Just a morphism of rings (preserving the units).
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Finally, an action of a monoid (M, u,n) on a set S is defined to be a
function v : M x § — S such that the following two diagrams commute:

MxMxS—L ,MxS IxS—2 M xS
T !
MxS ¥ S, S.

If we write v(x, s} = x * s to denote the result of the action of the monoid
element x on the element s € S, these diagrams state just that

x-(y-s)=(xy)-s, u-s=s

forall x, ye M and all se S. These are the usual conditions for the action-
of a monoid on a set, familiar especially in the case of a group acting
on a set as a group of transformations. If we shift from the category of
sets to the category of topological spaces, we get the usual continuous
action of a topological monoid M on a topological space S. If we take
(M, u, n> to be a monoid in (Ab, ®, Z), then an action of M on an object
S of Ab is just a left module § over the ring M.



