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PREFACE

A most important objective of this book is to present the practice of automatic process
control along with the fundamental principles of contro} theory. To this end we have
included in the book a generous number of case studies, problems, and examples taken
directly from our experience as industrial practitioners and consultants. It is our belief
that, although there are many fine books in the market that cover the principles and theory
of automatic process control, most of them do not expose the reader to the practice of
these principles.

The notes from which the book was developed have been tested dunng the last few
years in senior-level chemical and mechanical engineering courses at the University of
South Florida and Louisiana State University. Also, many parts of the book have been
used for the past several years by the authors in teaching short courses to practicing
engineers in this country and abroad.

The import of the book is directed toward the process industries. The book can be
used by senior engineering students, principally in the fields of chemical, mechanical,
metallurgical, petroleum, and environmental engineering, and by technical personnel in
the process industries. We believe that in order to control a process, the engineer must
first understand the process. This is why throughout this book we base the understanding
of process dynamic response on the principles of material and energy balances, fluid
flow, heat transfer, separation processes, and reaction kinetics. Most senior engineering
students will have the background necessary to understanding these concepts at the level
at which we present them. The mathematical level required is covered in any undergraduate
engineering curriculum-—mainly operational calculus and differential equations.

The definitions of terms and mathematical tools used in the study of process control
systems are presented in Chapters 1 and 2. Chapters 3 and 4 present the principles of
process dynamic response. In these chapters we use numerous examples to show how to
develop simple process models and to learn the physical significance of the parameters
that describe the dynamic behavior of the process.

Chapter 5 presents a discussion of some important components of a control system.
Namely, sensors, transmitters, control valves, and feedback controllers. The practical
operating principles of some common sensors, transmitters, and control valves are pre-
sented in Appendix C. Students who are interested in acquiring a working knowledge of
process instrumentation are strongly encouraged to study Appendix C.

The design and analysis of feedback control systems is the subject of Chapters 6
and 7, while the rest of the important industrial control techniques are treated in Chapter
8. These are ratio, cascade, feedforward, override, selective, and multivariable control.
We use numerous practical examples to illustrate actual industrial applications of these
techniques. )

The principles of mathematical modeling and computer simulation of processes and
their control systems are presented in Chapter 9. In this chapter we present a very useful
modular program architecture that can be used to illustrate the principles of dynamic
response, stability, and tuning of control systems.
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In our experience, a one-semester course should include the first six chapters of the
book through Section 6-3, plus the section on feedforward control from Chapter 8. Then,
depending upon the availability of time and the instructor’s preference, the sections on
computing relays, ratio control, cascade.control, root locus, and frequency response can
be included. These sections are independent of each other. If the course includes a
laboratory, the material in Chapter 5 and Appendix C should serve as excellent background
for the ‘laboratory experiments. The examples in Chapter 9 can serve as blueprints for
computer simulation *‘experiments’’ to supplement the actual laboratory experiments.

If two semesters or quarters are available for teaching the course, the entire text can
be presented in detail. The course should include a term project using the process control
problems of Appendix B. These are actual industrial problems and provide the student
with the opportunity to design, from scratch, the control system for a process. We strongly
believe that these problems are an important contribution of this book.

In this book we have exclusively used the transfer function approach over the state
variable approach for three reasons: First, we strongly believe that transfer functions are
more viable for conveying understanding of process control concepts; second, we are not
aware of any control schemes used in industry today that require the state variable approach
in their design; and finally, the state variable approach requires a stronger mathematical
background than transfer functions.

In any work of this type there are numerous people who contribute, encourage, and
help the authors in different ways. We are no exception and feel blessed to have these
persons around. From industry, both authors would like to thank Charles E. Jones of
Dow Chemical USA, Louisiana Division, for supplying the motivation of the industrial
practice ‘of process control and for his encouraging us to seck higher education. From
academia, our two universities have provided the atmosphere and help necessary for
completing this project. We would like to thank the facuity and students of our departments
for developing in us a deep appreciation and satisfaction in academic instruction. To serve
as agents in the training and development of young minds is certainly a most rewarding
profession.

The encouragement of our undergraduate and graduate students (the young minds)
will never be forgotten, especially that of Tom M. Brookins, Vanessa Austin, Sterling
L. Jordan, Dave Foster, Hank Brittain, Ralph Stagner, Karen Klingman, Jake Martin,
Dick Balhoff, Terrell Touchstone, John Usher, Shao-yu Lin, and A. (Jefe) Rovira. From
the University of South Florida, Carlos A. Smith would like to thank Dr. L. A. Scott;
his friendship and advice during the last ten years have been most helpful. Thanks are
also due to Dr. J. C. Busot; his constant question, ‘‘When are you going to finish the
~ book?"’ has certainly helped in providing some of the fuel necessary to continue. From

-Louisiana State University, Armando B. Corripio would like to acknowledge the rolé
Drs. Paul W. Murrill and Cecil L. Smith played in getting him started in automatic
process control. They not only taught him the theory, they instilled in him their love for
the subject and for teaching it.




Preface ix

Finally, the authors would like to thank the secretarial staffs of both universities for
their care, efficiency, and patience in typing the manuscript. From USF we thank Phyllis
Johnson and Lynn Federspeil. From LSU we thank Janet Easley. Janice Howell, and
Jimmie Keebler.

Carlos A. Smith
Tampa, Florida

Armando B. Corripio
Baton Rouge, Louisiana
1984
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CHAPTER

1

Introduction

The principal purpose of this chapter is to present you, the reader, with the need for
automatic process control and to motivate you to study it. Automatic process control 1s
concerned with maintaining process variables, temperatures, pressures, flows, compo-
sitions, and the like at some desired operating value. As we shall see in the ensuing
pages, processes are dynamic in nature. Changes are always occurring, and if actions
are not taken, the important process variables—those related to safety, product quality,
and production rates—will not achieve design conditions.

This chapter also introduces two control systems, takes a look at some of their
components, and defines some terms used in the field of process control. Finally, the
background needed for the study of process confrol is discussed.

1-1. A PROCESS CONTROL SYSTEM

In order to fix ideas, let us consider a heat exchanger in which a process stream is heated
by condensing steam. The process is sketched in Fig. 1-1.

The purpose of this unit is to heat the process fluid from some inlet tempertature
Tit), up to a certain desired outlet temperature, T(1). As mentioned, the heating medium
is condensing steam. The energy gained by the process fluid is equal to the heat released
by the steam, provided there are no heat losses to the surroundings, that is, the heat

{;‘r Steam

Process Heated process
stream stream

T, C (0, C

o,

Figure 1-1. Heat exchanger.
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exchanger and piping are well insulated. In this case the heat released is the latent heat
of condensation of the stean™

In this process there are many variables that can change, causing the outlet tem-
perature to deviate from its desired value. If this happens some action must be taken (o
correct for this deviation. That is, the objective is to control the outlet process temperature
to maintain its desired value.

One way to accomplish this objective is by first measuring the temperature 7(s).
then comparing it to its desired value, and. based on this comparison, deciding what to
do to correct for any deviaton. The flow of steam can be used to correct for the deviation.
That is, if the temperature 1x above its desired value. then the steam valve can be throttled
back to cut the steam flow (energy) to the heat exchanger. If the temperature is below
its desired value, then the stcam valve could be opened some more to increase the steam
flow (energy) to the exchanger. All of this can be done manually by the operator, and
since the prbcedure is fairly straightforward, it should present no problem. However,
since in most process‘planls there are hundreds of variables that must be maintained at
some desired value, this correction procedure would require a tremendous number of
operators. Consequently, we would like to accomplish this control automatically. That
is, we want to have instruments that control the variables without requiring intervention
from the operator. This is what we mean by automatic process control.

To acconplish this objective a control system must be designed and implemented.
A possible control system and its basic components are shown in Fig. 1-2. (Appendix A
presents the symbols and identifications for different instruments.) The first thing to do
is to measure the outlet temperature of the process stream. This is done by a sensor
(thermocouple, resistance temperature device, filled system thermometers, thermistors,
etc.). This sensor is connected physicaily to a transmitter, which takes the output from
the sensor and converts it to a signal strong enough to be transmitted to a controller. The
controller then receives the signal, which is related to the temperature, and compares it
with the desired value. Depending on this comparison, the controller decides what to do
to maintain the temperature at its desired value. Based on this decision, the controller

then sends another signal to the final control element, which in turm manipulates the
steam flow.

Final control element
Steam

Signal ~

Controlier

N Transmitter
TaD. ¢ < To.C
i Sensor

Y

Figure 1-2. Heat exchanger control system.



1-2. Important Terms and Objective of Automatic Process Control 3

The preceding paragraph presents the four basic components of all control systems.
They are
1. Sensor, also often called the primary element.
Transmitter, also called the secondary element.
Controller, the **brain’’ of the control system.

AP

Final control element. often a control valve but not always. Other common final
control elements are variable speed pumps, conveyors, and electric motors.

The imi)onance of these components is that they perform the three basic operations
that must be present in every control system. These operations are

1. Measurement (M): Measuring the variable to be controlled is usually done by the
combination of sensor and transmitter.

2. Decision (D): Based on the measurement, the controller must then decide what to
do to maintain the variable at its desired valuc.

3. Action (A): As a result of the controller’s decision. the system must then take an
action. This is usually accomplished by the final control element.

As mentjoned, these three operations, M, D, and A, must be present in every contro]
system. The decision-making operation in some systems is rather simple, while in others
it is more complex; we will look at many of them in this book. The engineer designing
a control system must be sure that the action taken affects the variable to be controlled,
that is, that the action taken affects the measured value. Otherwise, the system is not
controlling and will probably do more harm than good.

1-2. lIMPORTANT TERMS AND OBJECTIVE OF AUTOMATIC
PROCESS CONTROL

Al this time it is necessary to define some terms used in the field of automatic process
control. The first term is controlled variable. This is the variable that must be maintained
or controlled at some desired value. In the preceding =xample, the process outlet tem-
perature, T(1), is the controlled variable. The second term is set point. the desired value
of the controlled variable. The manipulated variable is the variable used to maintain the
controlled variable at its set point. In the example, the flow of steam is the manipulated
variable. Finally, any variable that can cause the controlled variable to deviate away from
set point is defined as a disturbance or upset. In most processes there are a number of
different disturbances. As an example, in the heat exchanger shown in Fig. 1-2, possible
disturbances are the inlet process temperature, T4f). the process flow. g(1), the quality
of the energy of the steam, ambient conditions, process fluid composition, fouling, and
so on. What is important here is to understand that in the process industries. most ofien
it is because of these disturbances that autematic process control is needed. If there were
no disturbances, design operating conditionis would prevail and there would be no necessity
of continuously ‘‘policing’’ the process.

The following additional terms are also important. Open-loop refers to the condition
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i which the controlier is disconnected from the process. That is, the controller is not
makiny the decision of how to maintain the controlled variable at set point. Another
nstance i which open-loop control exists 1s when the action (A) taken by the controller
does not affect the measurement (M. This is indeed a major flaw in the control system
design. Closed-loop control refers to the condition in which the controller is connected
to the process, ci:mparing the set point to the controlled variable and determining corrective
action.

With these terms defined, the objective of an automatic process control system can
be stated ay foltows:

The objecti+e of an automatic process control system is to use the manipulated variable
to maintain (ne controlled variable at its set point in spite of disturbances.

1-3. REGULATORY AND SERVO CONTROL

In some processes the controlled variable deviates from a constant set point because of
disturbances. Regulatory control tefers to systems designed to compensate for these
disturbances. In some other instances the most important disturbance is the set point
uself. That is, the set point may be changed as a function of time (typical of this are
batch processes), and therefore the controlied variable must follow the set point. Servo
control refers to control systems designed for this purpose.

Regulatory control is by far more common than servo control in the process industries.
However, the basic approach to designing either of them is essentially the same. Thus,
the principles learned in this book apply to both cases.

1-4. TRANSMISSION SIGNALS

Let us now say a few words about the signals used to provide communication between
instruments of a control system. There are three principal types of signals in use in the
process industry today. The prneumatic signal, or air pressure, ranges normally between
3 and 15 psig. Less often, signals of 6 to 30 psig or 3 to 27 psig are used. The usual
representation in piping and instrument diagrams (P&ID) for pneumatic signals is
~H——+—. The electrical, or electronic, signal ranges normally between 4 and 20 mA.
Less often 10 ta S0 mA, 1 to S V or 0 to 10 V are used. The usual representation in
P&ID’s for this signal is -~------ . The third type of signal, which is becoming common,
is the digital, or discrete, signal (zeros and ones). The use of process-control systems
based on large-scale computers, minicomputers, or microprocessors is forcing increased
use of this type of signal.

It is often necessary to change one type of signal into another type. This is done by
a transducer. For example. there may be a need to change from an electrical signal, mA,
to a pneumatic signal, psig. This is done by the use of a current (I) to pneumatic (P)
transducer (I/P). This is shown graphically in Fig. 1-3. The input signal may be 4 to 20
mA and the output 3 to 15 psig. There are many other types of transducers: pneumatic-
to-current (P/I), voltage-to-pneumatic (E/P), pneumatic-to-voltage (P/E), and so on.




