

Biomineralization

From Biology to Biotechnology and Medical Application

Edited by Edmund Baeuerlein

R318 B615

Biomineralization

From Biology to Biotechnology and Medical Application

Edited by Edmund Baeuerlein

Weinheim · New York · Chichester Brisbane · Singapore · Toronto

Prof. Dr. E. Bäuerlein Max-Planck-Institute of Biochemistry Dept. of Membrane Biochemistry D-82152 Martinsried Germany

This book was carefully produced. Nevertheless, authors and publisher do not warrant the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No. applied for.

British Library Cataloguing-in-Publication Data: A catalogue record for this book is available from the British Library.

Die Deutsche Bibliothek – CIP Cataloguing-in-Publication-Data A catalogue record for this publication is available from Die Deutsche Bibliothek

ISBN 3-527-29987-4

© WILEY-VCH Verlag GmbH. D-69469 Weinheim (Federal Republic of Germany), 2000 Printed on acid-free and chlorine-free paper.

All rights reserved (including those of translation in other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Composition: Asco Typesetters, Hong Kong. Printing: Strauss Offsetdruck GmbH, 69509 Mörlenbach. Bookbinding: J. Schäffer GmbH & Co. KG, 67269 Grünstadt. Printed in the Federal Republic of Germany.

Biomineralization

Edited by Edmund Baeuerlein

Other Titles of Interest

G. Krauss

Biochemistry of Signal Transduction and Regulation

1999. XIX, 474 pages with 162 figures and 183 tables. Hardcover. ISBN 3-527-29771-5

A. X. Trautwein (Ed.)

Bioinorganic Chemistry

1997. XII, 767 pages with 345 figures and 65 tables.

Softcover. ISBN 3-527-27140-6

J. A. Cowan

Inorganic Biochemistry

2. Edition

1997. XIV, 440 pages.

Hardcover. ISBN 0-471-18895-6

A. M. Kossevich

The Crystal Lattice

1999. 326 pages with 85 figures.

Hardcover. ISBN 3-527-40220-9

Dedication to

my wife Cornelia for her permanent encouragement and her editorial support

and to

Dieter Oesterhelt the advocate of biotechnology on the occasion of his 60th birthday

Preface

Biomineralization refers to the processes by which organisms precipitate inorganic minerals. This phenomenon is widespread in the biological world, and occurs in bacteria, single-celled protists, plants, invertebrates and vertebrates. Over 60 biominerals are known, the most abundant of which are calcium carbonates, silica and iron oxides. Most biominerals are organized hierarchically and ordered at many length scales, and often have remarkable physical characteristics. The minerals can be deposited intra- or extracellularly and are intimately connected to cellular metabolic processes. Thus biomineralization as a field of scientific study falls within several scientific disciplines, including biochemistry, biology, condensed matter physics, geology, inorganic chemistry, and molecular biology.

This is not a new scientific field; since the 19th century several thousand papers have been published, due largely to potential applications in areas as diverse as medical and dental science, paleontology and paleogeochemistry, materials science and engineering, evolutionary biology and astrobiology. However, the last two decades have seen the development of a new understanding, based partly on new experimental techniques and partly on conceptual advances. This new understanding has been documented in a number of books and symposium volumes covering the period between 1983 and 1991 and including: Biomineralization and Biological Metal Accumulation, edited by P. Westbroek and E. W. de Jong (D. Reidel, Dortdrecht, 1983); On Biomineralization, by H. A. Lowenstam and S. Weiner (Oxford University Press, Oxford, New York, 1989); Biomineralization: Chemical and Biochemical Perspectives, edited by S. Mann, J. Webb and R. J. P. Williams (VCH, Weinheim, 1989); Biomineralization, by K. Simkiss and K. M. Wilbur (Academic Press, New York, 1989); Iron Biominerals, edited by R. B. Frankel and R. P. Blakemore (Plenum, New York, 1991) and Mechanisms and Phylogeny of Mineralization in Biological Systems, edited by S. Suga and H. Nakahara (Springer Verlag, Tokyo,

While many researchers have made important contributions to the field, the modern era arguably began with the publication by Heinz Lowenstam of *Minerals Formed by Organisms* (Science 1981, 211, 1126–1131). In this paper, Lowenstam emphasized the importance of organic macromolecules in biomineralization, and distinguished between biological-controlled and biological-induced biomineralization processes. The theme of organic—inorganic interactions, and concepts such as directed nucleation, molecular recognition, and molecular tectonics were further developed by R. J. P. Williams, Stephen Mann, Stephen Weiner and others. In fact,

the identification of the organic phase and its role in biomineralization in various organisms has been the major theme in biomineralization research over the last two decades. Another important theme, which remains less well developed, is the relationship between biomineralization and metabolism.

The present volume was inspired by a "Workshop on Biomineralization and Nanofabrication", supported by the US Office of Navel Research and organized by one of us (R. B. F). It took place in San Luis Obispo, California, in May, 1996, covered biomineralization phenomena in a number of organisms and looked toward future developments. The other of us (E. B.) was a participant at the workshop and decided to organize the publication of a multi-author volume based on the stimulating presentations. During the planning stage of about three years, progress in the study of proteins involved in biomineralization phenomena by molecular biological methods led to the addition of contributions on silica mineralization in sponges to those on magnetite mineralization in prokaryotes and silica and calcium carbonate mineralization in unicellular eukaryotes. Because biomineralization in unicellular organisms takes place in vesicles, a new membrane biology is developing that may ultimately connect to vesicle-based materials science applications.

The volume begins with a short introduction to biominerals, of which three magnetite, silicic acid and calcium carbonate – are mineralized by organisms described here. The first part, "Prokaryotes", covers biomineralization phenomena on the surfaces of bacteria, as well as the formation of magnetite (Fe₃O₄) and greigite (Fe₃S₄) nanocrystals in the intracytoplasmatic vesicles (magnetosomes) of magnetotactic bacteria, their role in magnetotaxis, and technical and medical applications of isolated magnetosomes. It also includes in situ identification of magnetotactic bacteria, their phylogenetic relationships, and enzymes and related genes involved in their biomineralization processes. The second part, "Eukaryotes", opens with a unified theory of biomineralization in prokaryotes and eukaryotes from evolutionary and paleontological analysis of the Cambrian explosion 525 Myr ago. This retrospection on the evolution of biomineralization is followed by three complementary chapters on the formation of silica nanostructures in unicellular eukaryotes, the diatoms, and a related chapter on polysiloxane synthesis in a marine sponge. These are followed by a chapter on recent research into the protein components of shell nacre. The volume is completed by two chapters on coccolithophores, unicellular eukaryotes that are covered by mineralized scales of calcium carbonate known as coccoliths. It has been possible to study coccolith mineralization by mutation experiments as well as by isolation of the coccolith vesicles.

June, 2000

Richard B. Frankel San Luis Obispo, CA (USA) Edmund Baeuerlein Munich (Germany)

List of Contributors

Rudolf I. Amann Max-Planck-Institute for Marine Microbiology Celsiusstr. 1

28359 Bremen Germany

Fax: +49-421-2028790

e-mail:

ramann@postgate.mpi-bremen.de *Chapter 4*

Edmund Baeuerlein Max-Planck-Institute for Biochemistry Dept. of Membrane Biochemistry 82152 Martinsried

Germany Fax: +49-89-8578-3777

e-mail: baeuerle@biochem.mpg.de

Chapters 1 and 5

Dennis A. Bazylinski Dept. of Microbiology, 207 Science I Iowa State University Ames, IA 50014 USA

Fax: +1-515-2946019

e-mail: dbazylin@iastate.edu

Chapter 3

Angela M. Belcher Dept. of Chemistry and Biochemistry Campus Mail Code A5300 University of Texas at Austin Austin, Texas 78712 USA Fax: +1-512-471-8696

e-mail: belcher@mail.utexas.edu

Chapter 15

Terrence J. Beveridge College of Biological Science

Dept. of Microbiology University of Guelph

Guelph/Ontario, Canada N1G 2W1

Canada

Fax: +1-519-8371802

e-mail: TJB@micro.uoguelph.ca

Chapter 2

Simon Crawford School of Botany

The University of Melbourne

Parkville, Victoria 3052

Australia

Fax: +61-3-93475460

e-mail:

r.wetherbee@botany.unimelb.edu.au

Chapter 13

Danielle Fortin
Dept. of Earth Sciences

University of Ottawa

140 Louis Pasteur

Ottawa, ON, Canada K1N 6N5

Canada

e-mail: dfortin@science.uottawa.ca

Chapter 2

Richard B. Frankel Dept. of Physics

California Polytechnic State University

San Luis Obispo, CA 93407 USA

Fax: +1-805-7562435

e-mail: rfrankel@calpoly.edu

Chapter 3

Yoshihiro Fukumori Dept. of Biology Faculty of Science Kanazawa-Univ. Kakuma-machi Kanazawa 920-1192

Japan

Fax: +81-76-2645978

e-mail:

fukumor@kenroku.kanazawa-u.ac.jp *Chapter 7*

Elma L. González Dept. of Organismic Biology Ecology and Evolution UCLA University of California, Los Angeles Los Angeles, CA 90095-1606 USA

Fax: +1-310-2063987

e-mail:

gonzalez@biology.lifesci.ucla.edu *Chapter 17*

Erin E. Gooch Dept. of Chemistry and Biochemistry University of Texas at Austin Austin, Texas 78712

USA e-mail: gooch@mail.utexas.edu

Chapter 15

James W. Hagadorn Division of Earth & Planetary Sciences California Institute of Technology Pasadena, CA91125

USA

Fax: +1-626-5680935

e-mail: hagadorn@caltech.edu

Chapter 10

Mark Hildebrand

UCSD

Marine Biology Research Division,

0202

Scripps Institution of Oceanography UCSD University of California,

San Diego

9500 Gilman Drive La Jolla, CA 92093

USA

Fax: +1-619-5347313

e-mail: mhildebrand@ucsd.edu

Chapter 12

Joseph L. Kirschvink

Division of Earth & Planetary Sciences California Institute of Technology

Pasadena, CA 91125

USA

Fax: +1-626-5680935

e-mail: kirschvink@caltech.edu

Chapter 10

Nils Kröger

Institute for Biochemistry I University of Regensburg

Universitätsstr. 31 93053 Regensburg

Germany

Fax: +49-941-9432936

e-mail:

nils.kroeger@vkl.uni-regensburg.de

Chapter 11

Mary E. Marsh

Dept. of Basic Sciences

University of Texas Dental Branch

Health Science Center 6516 John Freeman Ave. Houston, TX 77030

USA

Fax: +1-713-500-4500

e-mail: mmarsh@mail.db.tmc.edu

Chapter 16

Tadashi Matsunaga Dept. of Biotechnology Tokyo University of Agriculture and

Technology

2-24-16 Nakacho, Koganei

Tokyo 184-8588

Japan

Fax: +81-42-385-7713

e-mail: tmatsuna@cc.tuat.ac.jp

Chapter 9

Daniel E. Morse

Institute of Molecular Genetics and

Biochemistry

Chairman of the Marine Biotechnology Center

UCSB University of California,

Santa Barbara

Santa Barbara, CA 93106-9610

USA

Fax: +1-805-8937998

e-mail: d_morse@lifesci.lscf.ucsb.edu

Chapter 14

Paul Mulvaney School of Chemistry

The University of Melbourne Parkville, Victoria 3052

Australia

Fax: +61-3-93475460

e-mail:

p.mulvaney@chemistry.unimelb.edu.au

Chapter 13

Regina Reszka

Max-Delbrück-Centrum für

Molekulare Medizin AG Drug Targeting Albert-Rössle-Straße 10 13122 Berlin-Buch

Germany

Fax: +49-30-94063213 e-mail: reszka@mdc-berlin.de

Chapter 6

Ramon Rossello-Mora

Max-Planck-Institute for Marine

Microbiology Celsiusstr. 1 D-28359 Bremen

Germany

Fax: +49-421-2028790

e-mail: rrossell@mpi-bremen.de

Chapter 4

Toshifumi Sakaguschi Dept. of Biotechnology

Tokyo University of Agriculture and

Technology

2-24-16 Nakacho, Koganei

Tokyo 184-8588

Japan

Fax: +81-42-385-7713

e-mail: sakaguch@cc.tuat.ac.jp

Chapter 9

Dirk Schüler

Max-Planck-Institute for Marine

Microbiology Celsiusstr. 1 D-28359 Bremen

Germany

Fax: +49-421-2028-580

e-mail:

dschuele@postgate.mpi-bremen.de

Chapters 8 and 4

Katsuhiko Shimizu

Marine Biotechnology Center and the

Dept. of Molecular,

Cellular and Developmental Biology University of California Santa Barbara

Santa Barbara, CA93106-9610

USA

Fax: +1-805-893-7998

e-mail: shimizu@lifesci.ucsb.edu

Chapter 14

Manfred Sumper Lehrstuhl Biochemie I University of Regensburg

Universitätsstr. 31 93040 Regensburg

Germany

Fax: +49-941-9432936

e-mail:

List of Contributors

manfred.sumper@vkl.uni-regensburg.de *Chapter 11*

Richard Wetherbee School of Botany The University of Melbourne Parkville, Victoria 3052 Australia

Fax: +61-3-93475460

e-mail:

XX

r.wetherbee@botany.unimelb.edu.au

Chapter 13

Abbreviations

AAS atomic adsorption spectroscopy

ADP adenosine diphosphate

ATCC American Type Culture Collection

ATP adenosine triphosphate ATPase adenosine triphosphatase AFM atomic force microscope

Bfr bacterioferritin

BMP bacterial magnetic particle
CA carbonic anhydrase activity
CCM carbon concentrating mechanism
CDF cation diffusion facilitator
CEA carcino-embryonal-antigen
CM cytoplasmic membrane

CN central nodule
CP chloroplast
CV coccolith vesicle
DEAE diethylaminoethanol
DIC dissolved inorganic carbon

DSi dissolved silicon

DSM Dt. Sammlung für Mikroorganismen EDTA ethylenediaminetetraacetic acid ESI energy spectroscopic imaging

EL extracellular loops
ER endoplasmatic reticulum
FAD flavin adenine dinucleotide

FESEM field emission scanning electron microscopy

FISH fluorescence in situ hybridization

FMN flavin mononucleotide
GA N-acetylglucosamine
GFP green fluorescent protein
GUT grand unified theory

HRTEM high resolution transmission electron microscopy

HPLC high pressure liquid chromatography

ICS intracellular carboxy segment

IgG immunoglobulin G

xxii Abbreviations

IL intracellular loops

INS intracellular amino segment

kDa kiloDalton

LPS lipopolysaccharide
MA N-acetyl muramic acid
MM magnetosome membrane

MMP many-celled magnetotactic procaryote

MRI magnetic resonance imaging

MTB magnetotactic bacteria

Myr million years

NAD nicotinamide adenine dinucleotide

NADH nicotinamide adenine dinucleotide, reduced

NADPH nicotinamide adenine dinucleotide phosphate, reduced

NMR nuclear magnetic resonance

OA ornithineamidelipid

OATZ oxic-anoxic transition zone

ORF open reading frame
OM outer membrane
P peptidoglycan layer
PC phosphatidylcholine
PCR polymerase chain reaction
PE phosphatidylethanolamine
PET positron emission tomography

PG phosphatidylglycerol PM plasma membrane R 123 Rhodamine 123

rRNA ribosomal ribonucleic acid SATA succinimidyl-S-acethylthioacetat SAED selected area electron diffraction SCID severe combined immunodeficiency

SD single-magnetic-domain SDS sodium dodecyl sulfate

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis

SDV silica deposition vesicle SEM scanning electron microscopy

SER/THR serine/threonine

SIT silicic acid transporters

STEM scanning transmission electron microscope

STV silicon transport vesicle

TEM transmission electron microscope

TEOS tetraethyleneoxysilane

TMPD tetramethyl-p-phenylenediamine

TPR tetratricopeptide repeat UTP uridine triphosphate

Contents

	Preface	vii
	List of Contributors x	vii
	Abbreviations	xxi
1	Biominerals – an Introduction	1
	Prokaryotes	5
2	Mechanistic Routes to Biomineral Surface Development	7
2.1	Introduction	
2.2	Bacterial Cell Walls and Other Surface Layers	8
2.3	~ '	11
2.3.1		11
2.3.2		12
2.4		13
2.5		13
2.5.1		13
2.5.2		16
2.5.3		18
2.5.4	0.101	18
2.5.5		20
2.6	a a = 1.1 1=1	21
2.7		21
		22
3	Magnetic Iron Oxide and Iron Sulfide Minerals within	
		25
2 1	D. A. Bazylinski, R. B. Frankel	
3.1		25
3.2		26
3.3	Ecology of Magnetotactic Bacteria	26

X	Contents
	Continus

3.4	Magnetite Magnetosomes	28
3.5	Greigite Magnetosomes	33
3.6	Arrangement of Magnetosomes in Cells	35
3.7	The Role of Magnetosomes and Magnetosome Chains in	33
	Magnetotaxis	36
3.8	Chemistry of Magnetosome Formation	38
3.9	Other Intracellular Iron Oxides and Sulfides in Bacteria	39
3.10	Magnetic Iron Oxides and Sulfides in Microorganisms Other Than	37
	Bacteria	39
3.11	Biogenic Iron Oxides and Sulfides in Modern and Ancient	39
	Environments, Their Use as Biomarkers, and Their Presence in	
	Higher Organisms	41
	Acknowledgements.	43
	References	
	resistances	43
4	Phylogeny and in Situ Identification of Magnetotactic Bacteria	47
	R. Amann, R. Rossello-Mora, D. Schüler	4/
4.1	Microbial Diversity and the Problem of Culturability	47
4.2	The rRNA Approach to Microbial Ecology and Evolution	47
4.3	Application of the rRNA Approach to Magnetotactic Bacteria	48
4.4	The Genus Magnetospirillum, Including Culturable Magnetotactic	40
	Bacteria	49
4.5	Phylogenetic Diversity and in Situ Identification of Uncultured	77
	Magnetotactic Cocci from Lake Chiemsee	50
4.6	Magnetotactic Bacteria are Polyphyletic with Respect to Their 16S	50
	rRNA	51
4.7	"Magnetobacterium Bavaricum"	52
4.8	Evidence for Further Diversity of Magnetotactic Bacteria	54
4.9	Current View of the Phylogeny of Magnetotactic Bacteria	56
	Acknowledgements	59
	References	59
		37
5	Single Magnetic Crystals of Magnetite (Fe ₃ O ₄) Synthesized in	
	Intracytoplasmic Vesicles of Magnetospirilum gryphiswaldense	61
	E. Baeuerlein	0.
5.1	A Challenge to Membrane Biochemistry	61
5.2	The Difficulties of Cultivating Magnetic Bacteria.	61
5.3	A Simple Spectroscopic Method for Following Magnetization of	01
	Magnetite-Forming Bacteria	63
5.4	The Exceptional Iron Uptake of Magnetic Bacteria	64
5.5	Specific Microaerobic Conditions for Magnetite Formation in	0.
	M. gryphiswaldense	65
5.5.1	Aerotactic Orientation in an Aquatic, Spatial Oxygen Gradient	66
5.5.2	Initial Oxygen Concentration in the Gas Phase and Its Effect on	
	Growth Yield and Magnetite Synthesis	66
5.5.3	The Concentration of Dissolved Oxygen and the Induction of	
	Magnetite Formation	67
		~ /

5.6	Dynamics of Iron Uptake and Magnetite Formation of	
	M. gryphiswaldense	68
5.6.1	Iron Addition – Point of Time and Its Effect on Magnetism and Iron Content	69
5.6.2	Magnetite Formation in M. gryphiswaldense is Closely Coupled to	
5.7	an Increased Iron Uptake One Single-Magnetic-Domain Crystal of Magnetite is Formed in	69
<i>- - -</i> 1	Each Phospholipid Vesicle of a Chain in M. gryphiswaldense	71
5.7.1 5.7.2	Fe(II)–Fe(III) – Spinels with Substitution? The Phospholipid Profiles of the Magnetosome and Cytoplasmic	73
	Membrane are Different	74
5.8	Mechanism(s) of Magnetite Crystal Formation in M. gryphiswaldense	75
5.8.1	The First Step: Iron Uptake	75
5.8.2	The Second Step: Passing to Cytoplasm	76
5.8.3	The Final Step: Formation of Single-Magnetic-Domain Magnetite	/(
	Crystals	76
	Acknowledgements	78
	References	78
6	Applications for Magnetosomes in Medical Research	81
6.1	Introduction	81
6.2	Gene Transfer Using Cationic Lipid-Magnetosome-DNA	
	Complexes	83
6.2.1	Preparation of Cationic Lipid–Magnetosome–DNA Complexes	83
6.2.2	Immobilization of Anti-Carcino-Embryonal Antigen (CEA)	
	Antibody to the Magnetosome Membrane	83
6.2.3	Cell Transfection	84
6.2.4	Prussian Blue Staining for the Detection of the Magnetosome (Iron)	
	Uptake into the Cells	85
6.2.5	Electron Microscopy	86
6.3	Future Perspectives	89
	Acknowledgements	91
	References	91
7	Enzymes for Magnetite Synthesis in Magnetospirillum	
	magnetotacticum	93
	Y. Fukumori	,
7.1	Introduction	93
7.2	Ferric Iron Reduction in <i>M. magnetotacticum</i>	95
7.2.1	Localization and Purification of Iron Reductase from	7.
1	M. magnetotacticum	95
7.2.2	Characterization of <i>M. magnetotacticum</i> Ferric Iron Reductase	
7.2.2	Function of Forrio Iron Poductoes in M. magnetotation	96
7.2.3 7.3	Function of Ferric Iron Reductase in <i>M. magnetotacticum</i>	97
	Ferrous Iron Oxidation in <i>M. magnetotacticum</i>	98
7.3.1	Purification of <i>M. Magnetotacticum</i> Cytochrome <i>cd</i> ₁	100

Contents

хi