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Preface

This book provides an introduction to computer graphics for students who wish to
learn the basic principles and techniques of the field and who, in addition, want to
write substantial graphics applications themselves. The field of computer graphics
continues to enjoy tremendous vitality and growth. The ever-increasing number of fea-
ture-length animated movies has generated heady excitement about what graphics can
do, and the ready access to graphics everyone now has through computer games and
the Internet is stimulating people to learn how to do it themselves.

Graphics systems are getting better, faster, and cheaper at a bewildering rate, and
many new techniques are emerging each year from researchers and practitioners
around the world, but the underlying principles and approaches tonstitute a stable and
coherent body of knowledge. Much of this knowledge can be acquired through a sin-
gle course in graphics, and this book attempts to organize the ideas and methods to
bring the reader from the beginning, with modest programming skills, to being able
to design and produce significant graphics programs.

INTENDED AUDIENCE

The book is designed as a text for either a one- or two-semester course at the senior
undergraduate or first-year graduate level. It can also be used for self-study. It is
aimed principally at students majoring in computer science or engineering, but will
also suit students in other fields, such as physics and mathematics.

Mathematical Background Required

The reader should have the equivalent of one year of college mathematics; knowledge
of elementary algebra, geometry, trigonometry, and elementary calculus also is as-
sumed. Some exposure to vectors and matrices is useful, but not essential, as vector
and matrix techniques are introduced in the context of graphics as they are needed,
and an appendix also summarizes the key ideas.

Computer graphics tends to use a lot of mathematics to express the geometric re-
lationships between lines, surfaces, and the viewing eye. Although no single mathe-
matical notion is difficult in itself, the sheer number of tools required can be daunting.
The book places particular emphasis on revealing the reasons for using this or that
technique and on showing how the objects of interest in a graphics program are prop-
erly described by the mathematical objects we use.

Computer Programming Background Required

In general, the reader should have at least one semester of experience writing com-
puter programs in C,C++, or Java. A lot of the programming in graphics involves the
direct translation of geometric relationships into code and so uses straightforward
variables, functions, arrays, looping, and testing, which is similar from language to lan-
guage. C++ is used throughout the book, but much of the material will be familiar to
someone whose computer language background is only C.

It is helpful for the reader to have experience as well in manipulating struct’s
in C or classes in C++.

These are used to capture the rather complicated structure of some graphical ob-
jects that reside in a scene, where the object (say, a castle or an airplane) consists of
many parts and these parts themselves consist of complex subparts. Some experience
with elementary linked data structures such as linked lists or trees is also desirable,
but not essential.

A reader with knowledge of C but not C++ will need to pick up the basics of ob-
ject-oriented programming. We define a number of useful classes (such as the
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Window,Mesh, Scene, Camera, and Texture classes) and show why they are so
convenient and usable. Some of the hallmarks of object-oriented programming, such
as inheritance and polymorphism, are used in a few contexts to make the program-
mer’s job easier, but we do not place inordinate emphasis on a pure object-orient-
ed approach.

PHILOSOPHY

The book has been completely reorganized and rewritten from the first edition, but
the basic philosophy remains: Computer graphics is learned by doing it: One must
write and test real programs to comprehend fully what is going on. A principal goal
of the book is to show readers how to translate a particular design “task” first into its
underlying geometric components, to find a suitable mathematical representation for
the objects involved, and finally to translate this representation into suitable algo-
rithms and program code. Readers start by learning how to develop simple routines
to produce pictures. Then methods for rendering drawings of ever more complex ob-
jects are presented in a step-by-step fashion.

Exercises and Problems

More than 440 drill exercises appear throughout the book. Most of these are of the
“stop-and-think” variety that require no programming and that allow readers to test
their grasp of the material themselves. Some urge the student to implement some of
the new ideas in program code.

In addition, “case studies” appear at the end of each chapter, amounting to 100 in
all. These exercises are normally programming projects suitable for homework as-
signments and range from the simple to the challenging. They expand on the mater-
ial within their chapter and often extend ideas in new directions. Whether or not the
case studies are actually carried out by students, they should be studied as an integral
part of the chapter.

A suggested “level of effort” is associated with each case study, to indicate the ap-
proximate investment in time a student may need to accomplish the task. Program-
ming is an unpredictable business and students’ abilities vary, but the rough guide is
as follows:

Level of Effort

I: A simple project that can be implemented in an evening, suitable to be made due
at the next class meeting.

II: A more extensive project that might be assigned to be due in a week, so that a stu-
dent has time to think about designing the program and has adequate time for the it-
erative (and sometimes frustrating) testing and debugging cycle that projects always
seem to require.

III: A major project that might require three weeks to design and implement. Such
a project requires substantial design effort and careful program layout, but would
(correctly) be viewed as a major accomplishment by the student.

Use of OpenGL

A frequent stumbling block that appears as one first brushes up against computer
graphics is getting started making pictures. It is easy enough to write a program, but
there must be an underlying tool that ultimately draws the lines and curves on the
screen. Fortunately, such a tool exists and is readily available. OpenGL emerged from
Silicon Graphics, Inc.,in 1992 and has become a widely adopted graphics application
programming interface (API). It provides the actual drawing tools through a collec-
tion of functions that are called within an application. As described in Appendix 1, it



is available (usually through free downloads over the Internet) for all types of com-
puter systems encountered in colleges, universities, and industry. OpenGL is casy to
install and learn, and its longevity as a standard API is being nurtured by the OpenGL
Architecture Review Board (ARB), an industry consortium responsible for guiding
the evolution of the software.

One aspect of OpenGL that makes it so well suited for use in a computer graph-
ics course is its “device independence,” or portability. Many university computer lab-
oratories contain a variety of different computers. A student can develop and run a
program on any available computer. The program can then be run on a different
computer, for testing or grading purposes perhaps, and the graphics will be the same
on the two machines.

OpenGL offers a rich and highly usable API for 2D graphics and image manipu-
lation, but its real power emerges with 3D graphics. Using OpenGL, students can
progress rapidly and produce stunning animations in only a single-semester course.

Use of C++ as the Programming Language
C++ is now familiar enough to most students in engineering and computer science
through a first programming course, that it is the natural choice of language to use.
It offers several advantages over C, such as passing paramcters to functions by ref-
erence, which reduces the need for explicit pointers and simplifies reading the code.
File I/O also is greatly simplified through streams, and in general, the syntax for all
kinds of I/O is clearer in C++ than in C.To keep things simple, in C++ no empbhasis
is placed on implementing operators.

Furthermore, it is easy to develop handy utility classes in C++, such as those for
a 2D or 3D point, a line, a window, or a color, which make code simpler and more ro-
bust. Students see the benefit of hiding the details of a geometric object within the ob-
ject itself and of imbuing the object with the ability to do things like draw itself or test
whether it intersects another object. The Canvas class developed in Chapter 3 offers
a good example, as it maintains its own notion of a window, a viewport, and a current
position, and it can draw basic figures with very little programming effort.

Emphasis on 3D Computer Graphics

Because playing games on personal computers has become so popular, and so many
dazzling animations are appearing in movies, students are particularly interested in
developing 3D graphics applications. Accordingly, several chapters from the first edi-
tion have been rewritten and rearranged in order to get to topics in 3D graphics as
quickly as possible. In a number of situations, concepts are presented for the 2D case
and the 3D case together, which helps to clarify the distinctions between the two.

Describing 3D Scenes with the use of Scene Design Language

It can be very awkward and time consuming to design a scene of many 3D objects
using “raw” OpenGL commands. So a simple Scene Design language (SDL) is in-
troduced in Chapter 5 (and fully defined in an appendix). Using this language, students
can describe scenes with familiar terms like “cube,” “sphere,” and “rotate” and can
build files of such instructions that can be read into their program at run time. An ap-
pendix (and the book’s Web Site) provides code for an interpreter that can read an
SDL file and build a list of objects described in the file. It is then a simple matter to
usc OpenGL to draw the scene from the object list.

This same language and interpreter is put to fine use in Chapter 14, in which the
student develops code for ray tracing a scene described using SDL. Students can
therewith design and ray trace much more elaborate and interesting scenes than
would be possible otherwise.
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Optional Use of POSTSCRIPT®

In recent years, POSTSCRIPT has become a de facto standard page-layout language, of-
fering a rich set of operators for drawing text and graphics in a device-independent
manner. PosTSCRIPT usually works invisibly within a laser printer, receiving com-
mands from a word-processing or page-layout program and converting them to lines,
dots, and characters. But it is possible for a student to prepare a “script” of POST-
ScrIPT commands and direct it to a printer, whereupon the onboard POSTSCRIPT in-
terpreter creates the intended graphics. Beautiful graphics can be created in this way.
Therefore, POSTSCRIPT provides an excellent example of a concise and powerful 2D
graphics language, with many of the same capabilities as OpenGL to carry out trans-
formations and perform rendering.

The POSTSCRIPT language is introduced in an appendix, and students interested in
approaching graphics this way are shown how to create interesting scripts that pro-
duce pleasing pictures. The appendix also shows how to download and work with
GhostScript, which provides an on-screen POSTSCRIPT interpreter, so that pictures
can be easily previewed and debugged during their development.

ORGANIZATION OF THE BOOK AND COURSE PLANS

There is much more in this book than can be covered in a one-semester course or even

in a two-semester course. The book has been arranged so that the instructor can se-
lect different groups of chapters for close study, depending on the length of the course
and the interests and backgrounds of the students in the class. Several such paths
through the book are suggested here, after the principal topics in each chapter are de-
scribed.

Brief Overview of Each Chapter

Chapter 1. This chapter gives an overview of the computer graphics field, with
examples of how various of its subfields are using graphics. The different kinds of
graphics display systems available are described, along with the types of “primitives”
(polygons, text, images, etc.) that a graphic system displays. The chapter also describes
some of the many kinds of input devices (mouse, tablet, data glove, etc.) that are in
common use.

Chapter 2. This chapter gets students started with writing graphics applications.
Programming using OpenGL is described, and several complete line-drawing appli-
cations (including the popular Sierpinski gasket) are developed. Techniques are dis-
cussed for using OpenGL to draw various primitives such as polylines and polygons
and for using the mouse and keyboard in an interactive graphics application. Case
studies at the end of the chapter provide interesting programming projects to help stu-
dents get a clear initial sense of how a graphics application is implemented.

Chapter 3. Chapter 3 develops the central notion of the window-to-viewport map-
ping, for sizing and positioning pictures on the display. Do-it-yourself management of
windows and viewports is discussed, as is using OpenGL to handle the details. A first
clipping algorithm is developed. Zooming, panning, and tilting to achieve interesting
visual effects are described, as is the simple animation of figures. A Canvas class is
developed that encapsulates all of the tools. The drawing of complex polygon-based
figures, circles, and arcs is discussed, as is the parametric form for representing both
2D and 3D curves.

Chapter 4. This chapter reviews vectors and their basic operations and shows the
great benefits to be gained by using vector tools in graphics. Students who are famil-
iar with vectors can read the chapter quickly, focusing on how vectors describe rela-
tions between the geometric objects they manipulate in their programs. Where



possible, vector operations are treated without regard for the dimensionality of the
space in question, but the use of the cross product in 3D is given special emphasis.

The notion of a coordinate frame is introduced, and it is shown how such frames
make it natural to work with homogeneous coordinates. Affine combinations of points
are discussed to clarify the difference between vectors and points (to help avoid a com-
mon pitfall that arises when one writes graphics applications). Several applications in-
volving interpolation, elementary Bezier curves, and line intersections are developed.
The fundamental algorithm to clip a line against a convex polygon is developed in de-
tail, and more advanced clipping algorithms are addressed in the case studies. (An in-
teresting project for “2D ray tracing” is suggested in one case study.)

Chapter 5. Transformations are of central importance in computer graphics, and stu-
dents sometimes have difficulty developing intuitions about them—particularly about
3D transformations. This chapter develops the underlying theory of transforming figures
and coordinate systems using affine transformations in both the 2D and 3D cases.
Homogeneous coordinates are employed from the start for describing transformations.
Special care is given to rotations in 3D, which are notoriously difficult to visualize.

Tools are added to the Canvas class set forth in Chapter 3 to shift, scale, and ro-
tate figures through the “current transformation,” and OpenGL’s matrix operations
are enlisted to facilitate this feature. An overview of the OpenGL viewing pipeline
is then developed, and the roles of the modelview, projection, and viewport trans-
formations are described. The drawing of 3D objects using OpenGL’s tools is devel-
oped. The use of Scene Description Language (SDL) is introduced, and it is shown
how to use the SDL interpreter to read in a description of a 3D scene from a file and
to draw the objects represented in the file.

Chapter 6. In this chapter, tools are developed for modeling and drawing com-
plicated mesh objects. Sample meshes are developed, including polyhedra such as
the dodecahedron and buckyball and more complex shapes such as arches, domes,
“tubes” that undulate through space, and surfaces of revolution. Techniques are de-
veloped for rendering these objects either with flat or smooth shading.

Chapter 7. This chapter develops tools for the flexible viewing of 3D scenes. The
“synthetic camera” that forms perspectival views is defined, and its relationship to the
low-level viewing tools OpenGL provides is discussed. A convenient Camera class
is built that encapsulates the details of manipulating the camera and makes it easy to
“fly” the camera through a scene in an animation.

The mathematics of perspectival projections is then developed in detail, along
with a discussion of how OpenGL produces perspectival views through matrix ma-
nipulations. The clipping algorithm that operates in homogeneous coordinate space
(which OpenGL also uses) is developed in detail. Methods for producing stereo views

are introduced. The chapter closes with a taxonomy of the many kinds of projections-

used in art, architecture, and engineering and shows how to produce each kind of
projection in a program.

Chapter 8. Chapter 8 tackles ways to make pictures of 3D scenes more realistic.
Shading models are developed that compute the various light components that reflect
off of objects that are bathed in light. Methods for using OpenGL to set up light
sources and alter the surface material properties of objects are described. OpenGL’s
depth-buffer method of removing hidden surfaces is described in detail. Techniques
for “painting” texture onto the surface of an object to make it more realistic are de-
veloped, for both procedural and “image” textures. Finally, methods for adding sim-
ple shadows to pictures are presented.

Chapter 9. This chapter delves into the fascinating area of fractals and ways to gen-
erate images of them. Methods are presented for refining a curve’s shape to maintain
“self-similarity,” which, in the limit, produces a fractal. Methods are also presented for
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drawing very complex curves based on a small set of “string-replacement” rules. Tiling
the plane with a small set of shapes, including “reptiles,” is described.

Methods are described for drawing complex images known as “strange attractors.”
These methods use the repeated application of a few affine transformations. The in-
verse problem of how to find a set of affine transformations whose attractor is a given
image is presented and leads to a discussion of fractal image compression that exploits
the technique. The celebrated Mandelbrot set and Julia sets are introduced, and tools
to draw them are developed.

Chapter 10. Chapter 10 discusses powerful graphics methods for manipulating
images formed on a raster display.

The basic pix map is revisited as a fundamental object for storing and manipulat-
ing images, and a number of operations for manipulating pix maps are developed.
The classical Bresenham'’s algorithm for drawing lines is described in detail. Ways to
describe “regions” in a pix map and to fill them with a color or pattern are devel-
oped. Particular attention is given to filling a polygonal region. The phenomenon of
aliasing that plagues graphics programmers is discussed, and some techniques for re-
ducing aliasing are developed. The techniques of dithering and error diffusion that
produce the effect of more colors than a device can display also are described.

Chapter 11. This chapter is devoted to the design and drawing of “smooth” curves
and surfaces. The theory of Bezier and B-spline curves is described, along with that
for rational B-splines, which leads to a discussion of NURBS curves. Interactive curve
design is presented, wherein a designer specifies a set of “control points” with a mouse
and uses a curve-generation algorithm to preview the curve associated with those
points. The curve may either interpolate the points or merely be attracted to them.

Complex surface design using Bezier, B-spline, and NURBS patches is also de-
veloped, and the issue of joining two patches together seamlessly is addressed.

Chapter 12. This chapter examines some intricacies of the human color vision
system and addresses the problem of representing colors numerically. The CIE stan-
dard chromaticity diagram is described, along with various ways to use it in color cal-
culations. The color gamuts of various devices also are discussed, as are different
color spaces and conversions of colors between them. The problem of efficient color
quantization, which attempts to reduce the number of different colors in an image
without destroying its visual quality, is developed.

Chapter 13. In this chapter, several methods are developed for performing prop-
er hidden surface removal (HSR) in pictures of 3D scenes. The difference between
“image-precision” and “object-precision” algorithms is discussed, along with ways to
preprocess the polygonal faces in a scene for rapid HSR. The depth-buffer method
first seen in Chapter 8 is examined more deeply.

Several HSR methods based on sorting the list of faces to allow rapid rendering,
including the binary space partition approach, are discussed. A scan-line HSR method
also is developed, and its advantages over the depth-buffer method are described.
Further HSR methods based on a “divide-and-conquer” approach are also discussed.

Chapter 14. Chapter 14 introduces the powerful ray-tracing approach to render-
ing scenes with high realism. Working through this chapter, the student can first de-
velop a primitive, but simple, ray tracer and then add on capabilities to ultimately
produce a full ray tracer that can generate dazzling images. Methods to intersect rays
with various shapes are described, followed by ways to render the objects using dif-
ferent shading models. The physically based Cook-Torrance reflection model, which
OpenGL cannot provide, is developed for use in ray tracing. Techniques for painting
texture onto ray-traced surfaces—both 3D textures such as marble and image-based
textures—are described in detail. Methods to speed up ray tracing using bounding
boxes are also developed.



A great advantage of ray tracing is that it automatically performs HSR and makes
it easy to create exact shadows of objects. In addition, it allows one to simulate the
reflection of light from shiny surfaces, as well as the refraction of light through trans-
parent objects. Methods to accomplish each of these aims are described. The chap-
ter ends with a thorough discussion of ray tracing complex objects formed by using
“constructive solid geometry.”

Suggested Paths through the Book

All suggested paths through the book include Chapters 1 through 5 as fundamental,
although Chapter 4 can be perused independently by students who are familiar with
vectors. Chapter 9 can be tackled after Chapter 5 with no loss in continuity, as can
Chapter 10. The 2D parts of Chapter 11 also may be studied after Chapter 5.

Possible Course Plans

e For a one-semester undergraduate course in which interest is highest in 3D graph-
ics: Chapters 1 through 5, with parts of Chapter 6 and Chapter 7 and parts of
Chapter 9.

o If extending the material to a two-semester course, add the rest of Chapter 7 and
parts of Chapters 8, 10, and 11.

e For a one-semester undergraduate course in which interest is highest in 2D and
raster graphics: Chapters 1 through 3, along with the POSTSCRIPT appendix and
parts of Chapters 4 and 5. Also include Chapter 9.

* If extending the material to a two-semester course, add parts of Chapters 7 and
8, and include Chapters 10 and 11 and parts of Chapter 12.

eFor a one-semester graduate course in which interest is highest in 3D graphics:
Chapters 1 through 7, with parts of Chapters 8 and 9.

o If extending the material to a two-semester course, add the rest of Chapter 8, and
include parts of Chapters 10 and all of Chapters 11 through 14.

*For a one-semester graduate course in which interest is highest in 2D and raster
graphics: Chapters 1 through 3, along with the POSTSCRIPT appendix and parts of
Chapters 4 through 8. Include Chapter 9 and 10 as well.

o If extending the material to a two-semester course, add Chapters 11 and 12 and
parts of Chapters 13 and 14.

SUPPLEMENTS

An accompanying instructor’s manual provides solutions to most of the exercises
and suggests additional projects. Complete demonstration programs of techniques
developed in the text are explained and listed.

Materials are also available through the book’s site on the Internet:
http://www.prenhall.com/hill.

Many samples of code and utility libraries are available here as well, as are im-
ages and textures. All may be used freely.
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NOTE TO THE READER: HOW TO VIEW THE STEREO
PICTURES

Several stereoscopic figures appear in the book to clarify discussions of 3D situa-
tions. They appear as a pair of nearly identical figures placed side by side. To gain the
full value of these pictures, coerce your left eye to look at the left-hand picture alone
and your right eye to look at the right-hand one alone. This may take practice: Some
people catch on quickly, others only after many bleary-eyed attempts, and some peo-
ple never. Of course, the figures still help to clarify the discussion even without the
stereo effect.

One way to practice viewing these figures is to hold the index fingers of each hand
upright in front of you, about 2 inches apart, and to stare “through them” at a blank
wall in the distance. Each eye, naturally, sees two fingers, but they seem to overlap in
the middle. This overlap is precisely what is desired when looking at stereo figures:
Each eye sees two fingers, but the “middle ones” are brought into perfect overlap.
When the “middle fingers” fuse together like this, the brain constructs a single 3D
image out of them. Some people find it helpful to place a piece of white cardboard
between the two figures and to rest their nose on it. The cardboard barrier prevents
each eye from seeing the image intended for the other eye.
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