335 7RO BhE GERTRLR)

S STHLIE I

(OpenGLJii)

> OpenGL

nd Edition

(%) F.S.HillbJR. #

EE%@ 4 8 K &
g2 wWwWw.sciencep.com

HRELRFRCHMA (HHEHE)

T EYIERE (OpenGL ki)

(BLENRRD
Computer Graphics Using OpenGL

Second Edition

(3£) F.S.Hill,JR.

H# 4 & K &

E=: 01-2003-7664 S

m & &

ABNAT I EHEBER RN EZEAR, JLW KRB A LZER ERR WM R
PLEREBEHEREKER A EERTBK. SaRTE, 5 HRSE R R S BRI 2,
CATER LG OEFEN), REECEMNT, T HEZ MBS LR R,

AB5] FEE MR BEHE AP BRBR . ABARRE T I ELE RS 5 (S
Bo THEATHENERIARE, BFIFAEBM EMK Lk, HRXRARMSHEHE.

English reprint copyright © 2003 by Science Press and Pearson Education Asia Limited.

Original English language title: Computer Graphics Using OpenGL, Second Edition by F.S. Hill, JR,
Copyright © 2001. ‘

ISBN 0-02-354856-8

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Prentice
Hall Inc..

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR
and Macao SAR).

SR Tep e NRICFESSE N (AR EAE. B HATBIX A E S X)) #8ER1T.

A H WA Pearson Education (HFAEHA AR BOLBIthIzE. LB BRI,

BB R4 B (CIP) iR

THE VLB (OpenGL f&) =Computer Graphics Using OpenGL/ (3£) /R (F. S, Hill, Jr.)
FE LA, —Jbl: BIEHRREE, 2004

ISBN 7-03-012499-5

[t [O.#&.. NLHENEREZ—SS2R—EM—3 3 [V.TP391.41

o [E R A P08 CIP Bl % (2003) 28 103044 5

R\t BRE / TiE%E: LAE
FAREPH: SAK / HEHME: AFALLEEHTE
A 2 & B & IR
b5 4 s db 6%

HR B f: 100717
http:// www .sciencep.com

&% ® & 5 EIR
RIEHBRAERIT SHFEBESY

*

20041 A% — R JFA: 787X960 1/16

2004 F 1 A —WKEIR] EAZK: 59 1/4 $EW: 6

EN¥: 1—3 000 ¥ 1381000
Efr: 95.00 5T

(WHENERREFE, RAATER M)

Preface

This book provides an introduction to computer graphics for students who wish to
learn the basic principles and techniques of the field and who, in addition, want to
write substantial graphics applications themselves. The field of computer graphics
continues to enjoy tremendous vitality and growth. The ever-increasing number of fea-
ture-length animated movies has generated heady excitement about what graphics can
do, and the ready access to graphics everyone now has through computer games and
the Internet is stimulating people to learn how to do it themselves.

Graphics systems are getting better, faster, and cheaper at a bewildering rate, and
many new techniques are emerging each year from researchers and practitioners
around the world, but the underlying principles and approaches tonstitute a stable and
coherent body of knowledge. Much of this knowledge can be acquired through a sin-
gle course in graphics, and this book attempts to organize the ideas and methods to
bring the reader from the beginning, with modest programming skills, to being able
to design and produce significant graphics programs.

INTENDED AUDIENCE

The book is designed as a text for either a one- or two-semester course at the senior
undergraduate or first-year graduate level. It can also be used for self-study. It is
aimed principally at students majoring in computer science or engineering, but will
also suit students in other fields, such as physics and mathematics.

Mathematical Background Required

The reader should have the equivalent of one year of college mathematics; knowledge
of elementary algebra, geometry, trigonometry, and elementary calculus also is as-
sumed. Some exposure to vectors and matrices is useful, but not essential, as vector
and matrix techniques are introduced in the context of graphics as they are needed,
and an appendix also summarizes the key ideas.

Computer graphics tends to use a lot of mathematics to express the geometric re-
lationships between lines, surfaces, and the viewing eye. Although no single mathe-
matical notion is difficult in itself, the sheer number of tools required can be daunting.
The book places particular emphasis on revealing the reasons for using this or that
technique and on showing how the objects of interest in a graphics program are prop-
erly described by the mathematical objects we use.

Computer Programming Background Required

In general, the reader should have at least one semester of experience writing com-
puter programs in C,C++, or Java. A lot of the programming in graphics involves the
direct translation of geometric relationships into code and so uses straightforward
variables, functions, arrays, looping, and testing, which is similar from language to lan-
guage. C++ is used throughout the book, but much of the material will be familiar to
someone whose computer language background is only C.

It is helpful for the reader to have experience as well in manipulating struct’s
in C or classes in C++.

These are used to capture the rather complicated structure of some graphical ob-
jects that reside in a scene, where the object (say, a castle or an airplane) consists of
many parts and these parts themselves consist of complex subparts. Some experience
with elementary linked data structures such as linked lists or trees is also desirable,
but not essential.

A reader with knowledge of C but not C++ will need to pick up the basics of ob-
ject-oriented programming. We define a number of useful classes (such as the

ii

Preface

Window,Mesh, Scene, Camera, and Texture classes) and show why they are so
convenient and usable. Some of the hallmarks of object-oriented programming, such
as inheritance and polymorphism, are used in a few contexts to make the program-
mer’s job easier, but we do not place inordinate emphasis on a pure object-orient-
ed approach.

PHILOSOPHY

The book has been completely reorganized and rewritten from the first edition, but
the basic philosophy remains: Computer graphics is learned by doing it: One must
write and test real programs to comprehend fully what is going on. A principal goal
of the book is to show readers how to translate a particular design “task” first into its
underlying geometric components, to find a suitable mathematical representation for
the objects involved, and finally to translate this representation into suitable algo-
rithms and program code. Readers start by learning how to develop simple routines
to produce pictures. Then methods for rendering drawings of ever more complex ob-
jects are presented in a step-by-step fashion.

Exercises and Problems

More than 440 drill exercises appear throughout the book. Most of these are of the
“stop-and-think” variety that require no programming and that allow readers to test
their grasp of the material themselves. Some urge the student to implement some of
the new ideas in program code.

In addition, “case studies” appear at the end of each chapter, amounting to 100 in
all. These exercises are normally programming projects suitable for homework as-
signments and range from the simple to the challenging. They expand on the mater-
ial within their chapter and often extend ideas in new directions. Whether or not the
case studies are actually carried out by students, they should be studied as an integral
part of the chapter.

A suggested “level of effort” is associated with each case study, to indicate the ap-
proximate investment in time a student may need to accomplish the task. Program-
ming is an unpredictable business and students’ abilities vary, but the rough guide is
as follows:

Level of Effort

I: A simple project that can be implemented in an evening, suitable to be made due
at the next class meeting.

II: A more extensive project that might be assigned to be due in a week, so that a stu-
dent has time to think about designing the program and has adequate time for the it-
erative (and sometimes frustrating) testing and debugging cycle that projects always
seem to require.

III: A major project that might require three weeks to design and implement. Such
a project requires substantial design effort and careful program layout, but would
(correctly) be viewed as a major accomplishment by the student.

Use of OpenGL

A frequent stumbling block that appears as one first brushes up against computer
graphics is getting started making pictures. It is easy enough to write a program, but
there must be an underlying tool that ultimately draws the lines and curves on the
screen. Fortunately, such a tool exists and is readily available. OpenGL emerged from
Silicon Graphics, Inc.,in 1992 and has become a widely adopted graphics application
programming interface (API). It provides the actual drawing tools through a collec-
tion of functions that are called within an application. As described in Appendix 1, it

is available (usually through free downloads over the Internet) for all types of com-
puter systems encountered in colleges, universities, and industry. OpenGL is casy to
install and learn, and its longevity as a standard API is being nurtured by the OpenGL
Architecture Review Board (ARB), an industry consortium responsible for guiding
the evolution of the software.

One aspect of OpenGL that makes it so well suited for use in a computer graph-
ics course is its “device independence,” or portability. Many university computer lab-
oratories contain a variety of different computers. A student can develop and run a
program on any available computer. The program can then be run on a different
computer, for testing or grading purposes perhaps, and the graphics will be the same
on the two machines.

OpenGL offers a rich and highly usable API for 2D graphics and image manipu-
lation, but its real power emerges with 3D graphics. Using OpenGL, students can
progress rapidly and produce stunning animations in only a single-semester course.

Use of C++ as the Programming Language
C++ is now familiar enough to most students in engineering and computer science
through a first programming course, that it is the natural choice of language to use.
It offers several advantages over C, such as passing paramcters to functions by ref-
erence, which reduces the need for explicit pointers and simplifies reading the code.
File I/O also is greatly simplified through streams, and in general, the syntax for all
kinds of I/O is clearer in C++ than in C.To keep things simple, in C++ no empbhasis
is placed on implementing operators.

Furthermore, it is easy to develop handy utility classes in C++, such as those for
a 2D or 3D point, a line, a window, or a color, which make code simpler and more ro-
bust. Students see the benefit of hiding the details of a geometric object within the ob-
ject itself and of imbuing the object with the ability to do things like draw itself or test
whether it intersects another object. The Canvas class developed in Chapter 3 offers
a good example, as it maintains its own notion of a window, a viewport, and a current
position, and it can draw basic figures with very little programming effort.

Emphasis on 3D Computer Graphics

Because playing games on personal computers has become so popular, and so many
dazzling animations are appearing in movies, students are particularly interested in
developing 3D graphics applications. Accordingly, several chapters from the first edi-
tion have been rewritten and rearranged in order to get to topics in 3D graphics as
quickly as possible. In a number of situations, concepts are presented for the 2D case
and the 3D case together, which helps to clarify the distinctions between the two.

Describing 3D Scenes with the use of Scene Design Language

It can be very awkward and time consuming to design a scene of many 3D objects
using “raw” OpenGL commands. So a simple Scene Design language (SDL) is in-
troduced in Chapter 5 (and fully defined in an appendix). Using this language, students
can describe scenes with familiar terms like “cube,” “sphere,” and “rotate” and can
build files of such instructions that can be read into their program at run time. An ap-
pendix (and the book’s Web Site) provides code for an interpreter that can read an
SDL file and build a list of objects described in the file. It is then a simple matter to
usc OpenGL to draw the scene from the object list.

This same language and interpreter is put to fine use in Chapter 14, in which the
student develops code for ray tracing a scene described using SDL. Students can
therewith design and ray trace much more elaborate and interesting scenes than
would be possible otherwise.

Preface

iii

iv Preface

Optional Use of POSTSCRIPT®

In recent years, POSTSCRIPT has become a de facto standard page-layout language, of-
fering a rich set of operators for drawing text and graphics in a device-independent
manner. PosTSCRIPT usually works invisibly within a laser printer, receiving com-
mands from a word-processing or page-layout program and converting them to lines,
dots, and characters. But it is possible for a student to prepare a “script” of POST-
ScrIPT commands and direct it to a printer, whereupon the onboard POSTSCRIPT in-
terpreter creates the intended graphics. Beautiful graphics can be created in this way.
Therefore, POSTSCRIPT provides an excellent example of a concise and powerful 2D
graphics language, with many of the same capabilities as OpenGL to carry out trans-
formations and perform rendering.

The POSTSCRIPT language is introduced in an appendix, and students interested in
approaching graphics this way are shown how to create interesting scripts that pro-
duce pleasing pictures. The appendix also shows how to download and work with
GhostScript, which provides an on-screen POSTSCRIPT interpreter, so that pictures
can be easily previewed and debugged during their development.

ORGANIZATION OF THE BOOK AND COURSE PLANS

There is much more in this book than can be covered in a one-semester course or even

in a two-semester course. The book has been arranged so that the instructor can se-
lect different groups of chapters for close study, depending on the length of the course
and the interests and backgrounds of the students in the class. Several such paths
through the book are suggested here, after the principal topics in each chapter are de-
scribed.

Brief Overview of Each Chapter

Chapter 1. This chapter gives an overview of the computer graphics field, with
examples of how various of its subfields are using graphics. The different kinds of
graphics display systems available are described, along with the types of “primitives”
(polygons, text, images, etc.) that a graphic system displays. The chapter also describes
some of the many kinds of input devices (mouse, tablet, data glove, etc.) that are in
common use.

Chapter 2. This chapter gets students started with writing graphics applications.
Programming using OpenGL is described, and several complete line-drawing appli-
cations (including the popular Sierpinski gasket) are developed. Techniques are dis-
cussed for using OpenGL to draw various primitives such as polylines and polygons
and for using the mouse and keyboard in an interactive graphics application. Case
studies at the end of the chapter provide interesting programming projects to help stu-
dents get a clear initial sense of how a graphics application is implemented.

Chapter 3. Chapter 3 develops the central notion of the window-to-viewport map-
ping, for sizing and positioning pictures on the display. Do-it-yourself management of
windows and viewports is discussed, as is using OpenGL to handle the details. A first
clipping algorithm is developed. Zooming, panning, and tilting to achieve interesting
visual effects are described, as is the simple animation of figures. A Canvas class is
developed that encapsulates all of the tools. The drawing of complex polygon-based
figures, circles, and arcs is discussed, as is the parametric form for representing both
2D and 3D curves.

Chapter 4. This chapter reviews vectors and their basic operations and shows the
great benefits to be gained by using vector tools in graphics. Students who are famil-
iar with vectors can read the chapter quickly, focusing on how vectors describe rela-
tions between the geometric objects they manipulate in their programs. Where

possible, vector operations are treated without regard for the dimensionality of the
space in question, but the use of the cross product in 3D is given special emphasis.

The notion of a coordinate frame is introduced, and it is shown how such frames
make it natural to work with homogeneous coordinates. Affine combinations of points
are discussed to clarify the difference between vectors and points (to help avoid a com-
mon pitfall that arises when one writes graphics applications). Several applications in-
volving interpolation, elementary Bezier curves, and line intersections are developed.
The fundamental algorithm to clip a line against a convex polygon is developed in de-
tail, and more advanced clipping algorithms are addressed in the case studies. (An in-
teresting project for “2D ray tracing” is suggested in one case study.)

Chapter 5. Transformations are of central importance in computer graphics, and stu-
dents sometimes have difficulty developing intuitions about them—particularly about
3D transformations. This chapter develops the underlying theory of transforming figures
and coordinate systems using affine transformations in both the 2D and 3D cases.
Homogeneous coordinates are employed from the start for describing transformations.
Special care is given to rotations in 3D, which are notoriously difficult to visualize.

Tools are added to the Canvas class set forth in Chapter 3 to shift, scale, and ro-
tate figures through the “current transformation,” and OpenGL’s matrix operations
are enlisted to facilitate this feature. An overview of the OpenGL viewing pipeline
is then developed, and the roles of the modelview, projection, and viewport trans-
formations are described. The drawing of 3D objects using OpenGL’s tools is devel-
oped. The use of Scene Description Language (SDL) is introduced, and it is shown
how to use the SDL interpreter to read in a description of a 3D scene from a file and
to draw the objects represented in the file.

Chapter 6. In this chapter, tools are developed for modeling and drawing com-
plicated mesh objects. Sample meshes are developed, including polyhedra such as
the dodecahedron and buckyball and more complex shapes such as arches, domes,
“tubes” that undulate through space, and surfaces of revolution. Techniques are de-
veloped for rendering these objects either with flat or smooth shading.

Chapter 7. This chapter develops tools for the flexible viewing of 3D scenes. The
“synthetic camera” that forms perspectival views is defined, and its relationship to the
low-level viewing tools OpenGL provides is discussed. A convenient Camera class
is built that encapsulates the details of manipulating the camera and makes it easy to
“fly” the camera through a scene in an animation.

The mathematics of perspectival projections is then developed in detail, along
with a discussion of how OpenGL produces perspectival views through matrix ma-
nipulations. The clipping algorithm that operates in homogeneous coordinate space
(which OpenGL also uses) is developed in detail. Methods for producing stereo views

are introduced. The chapter closes with a taxonomy of the many kinds of projections-

used in art, architecture, and engineering and shows how to produce each kind of
projection in a program.

Chapter 8. Chapter 8 tackles ways to make pictures of 3D scenes more realistic.
Shading models are developed that compute the various light components that reflect
off of objects that are bathed in light. Methods for using OpenGL to set up light
sources and alter the surface material properties of objects are described. OpenGL’s
depth-buffer method of removing hidden surfaces is described in detail. Techniques
for “painting” texture onto the surface of an object to make it more realistic are de-
veloped, for both procedural and “image” textures. Finally, methods for adding sim-
ple shadows to pictures are presented.

Chapter 9. This chapter delves into the fascinating area of fractals and ways to gen-
erate images of them. Methods are presented for refining a curve’s shape to maintain
“self-similarity,” which, in the limit, produces a fractal. Methods are also presented for

Preface

A\’

vi

Preface

drawing very complex curves based on a small set of “string-replacement” rules. Tiling
the plane with a small set of shapes, including “reptiles,” is described.

Methods are described for drawing complex images known as “strange attractors.”
These methods use the repeated application of a few affine transformations. The in-
verse problem of how to find a set of affine transformations whose attractor is a given
image is presented and leads to a discussion of fractal image compression that exploits
the technique. The celebrated Mandelbrot set and Julia sets are introduced, and tools
to draw them are developed.

Chapter 10. Chapter 10 discusses powerful graphics methods for manipulating
images formed on a raster display.

The basic pix map is revisited as a fundamental object for storing and manipulat-
ing images, and a number of operations for manipulating pix maps are developed.
The classical Bresenham'’s algorithm for drawing lines is described in detail. Ways to
describe “regions” in a pix map and to fill them with a color or pattern are devel-
oped. Particular attention is given to filling a polygonal region. The phenomenon of
aliasing that plagues graphics programmers is discussed, and some techniques for re-
ducing aliasing are developed. The techniques of dithering and error diffusion that
produce the effect of more colors than a device can display also are described.

Chapter 11. This chapter is devoted to the design and drawing of “smooth” curves
and surfaces. The theory of Bezier and B-spline curves is described, along with that
for rational B-splines, which leads to a discussion of NURBS curves. Interactive curve
design is presented, wherein a designer specifies a set of “control points” with a mouse
and uses a curve-generation algorithm to preview the curve associated with those
points. The curve may either interpolate the points or merely be attracted to them.

Complex surface design using Bezier, B-spline, and NURBS patches is also de-
veloped, and the issue of joining two patches together seamlessly is addressed.

Chapter 12. This chapter examines some intricacies of the human color vision
system and addresses the problem of representing colors numerically. The CIE stan-
dard chromaticity diagram is described, along with various ways to use it in color cal-
culations. The color gamuts of various devices also are discussed, as are different
color spaces and conversions of colors between them. The problem of efficient color
quantization, which attempts to reduce the number of different colors in an image
without destroying its visual quality, is developed.

Chapter 13. In this chapter, several methods are developed for performing prop-
er hidden surface removal (HSR) in pictures of 3D scenes. The difference between
“image-precision” and “object-precision” algorithms is discussed, along with ways to
preprocess the polygonal faces in a scene for rapid HSR. The depth-buffer method
first seen in Chapter 8 is examined more deeply.

Several HSR methods based on sorting the list of faces to allow rapid rendering,
including the binary space partition approach, are discussed. A scan-line HSR method
also is developed, and its advantages over the depth-buffer method are described.
Further HSR methods based on a “divide-and-conquer” approach are also discussed.

Chapter 14. Chapter 14 introduces the powerful ray-tracing approach to render-
ing scenes with high realism. Working through this chapter, the student can first de-
velop a primitive, but simple, ray tracer and then add on capabilities to ultimately
produce a full ray tracer that can generate dazzling images. Methods to intersect rays
with various shapes are described, followed by ways to render the objects using dif-
ferent shading models. The physically based Cook-Torrance reflection model, which
OpenGL cannot provide, is developed for use in ray tracing. Techniques for painting
texture onto ray-traced surfaces—both 3D textures such as marble and image-based
textures—are described in detail. Methods to speed up ray tracing using bounding
boxes are also developed.

A great advantage of ray tracing is that it automatically performs HSR and makes
it easy to create exact shadows of objects. In addition, it allows one to simulate the
reflection of light from shiny surfaces, as well as the refraction of light through trans-
parent objects. Methods to accomplish each of these aims are described. The chap-
ter ends with a thorough discussion of ray tracing complex objects formed by using
“constructive solid geometry.”

Suggested Paths through the Book

All suggested paths through the book include Chapters 1 through 5 as fundamental,
although Chapter 4 can be perused independently by students who are familiar with
vectors. Chapter 9 can be tackled after Chapter 5 with no loss in continuity, as can
Chapter 10. The 2D parts of Chapter 11 also may be studied after Chapter 5.

Possible Course Plans

e For a one-semester undergraduate course in which interest is highest in 3D graph-
ics: Chapters 1 through 5, with parts of Chapter 6 and Chapter 7 and parts of
Chapter 9.

o If extending the material to a two-semester course, add the rest of Chapter 7 and
parts of Chapters 8, 10, and 11.

e For a one-semester undergraduate course in which interest is highest in 2D and
raster graphics: Chapters 1 through 3, along with the POSTSCRIPT appendix and
parts of Chapters 4 and 5. Also include Chapter 9.

* If extending the material to a two-semester course, add parts of Chapters 7 and
8, and include Chapters 10 and 11 and parts of Chapter 12.

eFor a one-semester graduate course in which interest is highest in 3D graphics:
Chapters 1 through 7, with parts of Chapters 8 and 9.

o If extending the material to a two-semester course, add the rest of Chapter 8, and
include parts of Chapters 10 and all of Chapters 11 through 14.

*For a one-semester graduate course in which interest is highest in 2D and raster
graphics: Chapters 1 through 3, along with the POSTSCRIPT appendix and parts of
Chapters 4 through 8. Include Chapter 9 and 10 as well.

o If extending the material to a two-semester course, add Chapters 11 and 12 and
parts of Chapters 13 and 14.

SUPPLEMENTS

An accompanying instructor’s manual provides solutions to most of the exercises
and suggests additional projects. Complete demonstration programs of techniques
developed in the text are explained and listed.

Materials are also available through the book’s site on the Internet:
http://www.prenhall.com/hill.

Many samples of code and utility libraries are available here as well, as are im-
ages and textures. All may be used freely.

ACKNOWLEDGMENTS

This book and the first edition have grown out of notes used in courses I have been
teaching at the University of Massachusetts for the last 19 years. During this time, a
large number of students have helped to develop demonstrations and make sugges-
tions for improving the courses. They have also produced many exquisite graphical
samples, some of which appear here. Some students who have been particularly help-
ful in the first and second editions are Tarik Abou-Raya, Earl Billingsley, Dennis
Chen, Daniel Dee, Brett Diamond, Jay Greco, Tom Kopec, Adam Lavine, Russell

Preface

vii

viii

Preface

Turner, Bill Verts, Shel Walker, Noel Llopis, Russell Swan, A. Chandrashekhara, Em-
manuel Agu, Tom Laramee, Chang Su, Xiongzi Li, Jung-Yao Huang, Anjul Srivasta-
va, Steve Morin, and Elwood Anderson. I apologize for any inadvertent omissions.

Several colleagues have provided inspiration and guidance during the germina-
tion of the book. I am particularly grateful to Charles Hutchinson for his support in
starting the graphics effort at the university, to Michael Wozny for his enthusiasm
and encouragement in the development of that effort, and to Charle Rupp for the
many creative ideas in graphics he passed on to me. I would especially like to thank
Daniel Bergeron, who made substantial contributions to the coherence and read-
ability of the first edition.

I would also like to thank the following individuals, and many others who are not men-
tioned by name, for their advice and help: Edward Hammerand, Arkansas State University,
Deborah Walters, SUNY at Buffalo; Suzanne M. Lea, University of North Carolina at
Greensboro;John Neitzke, Northeast Missouri State University; Norman Hosay, University
of New Haven; David F. McAllister, North Carolina State University;John DeCatrel, Florida
State University; Steve Cunningham, California State University, Stanislaus; Paul Heckbert,
Carnegie Mellon University; Angelo Yfantis, University of Nevada; Lee H. Tichenor,
Western Illinois University; Norman Wittels, Worcester Polytechnic Institute; Edward Angel,
University of New Mexico; Matthew Ward, Worcester Polytechnic Institute; Richard E.
Neapolitan, Northeastern Illinois University; Jack E. Bresenham, Winthrop University;
Michael Goss, Colorado State University; Bikash Sabata, Wayne State University;and Paul
T. Barham, North Carolina State University.

Portions of the book were written while I was on sabbatical working with Dr. Her-
mann Maurer at the Institute for Information Processing and Computer Supported
Media, Technical University Graz, in Graz, Austria, and portions were written while
I was on a Fulbright grant at the Indian Institute of Science in Bangalore. I am grate-
ful for the stimulation and support I received during these visits.

Special thanks to my project manager Ana Arias Terry, for her guidance and en-
couragement during the preparation of the book, and to Irwin Zucker, the produc-
tion editor, whose expertise and care during production have markedly improved it.
Finally, thanks to my parents, to my wife Merilee, and to Greta, Jessie, and Rosy, for
all their patience and support while this book slowly took shape.

NOTE TO THE READER: HOW TO VIEW THE STEREO
PICTURES

Several stereoscopic figures appear in the book to clarify discussions of 3D situa-
tions. They appear as a pair of nearly identical figures placed side by side. To gain the
full value of these pictures, coerce your left eye to look at the left-hand picture alone
and your right eye to look at the right-hand one alone. This may take practice: Some
people catch on quickly, others only after many bleary-eyed attempts, and some peo-
ple never. Of course, the figures still help to clarify the discussion even without the
stereo effect.

One way to practice viewing these figures is to hold the index fingers of each hand
upright in front of you, about 2 inches apart, and to stare “through them” at a blank
wall in the distance. Each eye, naturally, sees two fingers, but they seem to overlap in
the middle. This overlap is precisely what is desired when looking at stereo figures:
Each eye sees two fingers, but the “middle ones” are brought into perfect overlap.
When the “middle fingers” fuse together like this, the brain constructs a single 3D
image out of them. Some people find it helpful to place a piece of white cardboard
between the two figures and to rest their nose on it. The cardboard barrier prevents
each eye from seeing the image intended for the other eye.

Contents

Preface vii

1 Introduction to Computer Graphics 1

1.1 What is Computer Graphics? 1
1.2 Where Computer Generated Pictures are Used 3
1.2.1. Art, Entertainment, and Publishing 3
1.2.2. Computer Graphics and Image Processing 3
1.2.3. Monitoring a Process S
1.2.4. Displaying Simulations 6
1.2.5. Computer-aided Design 6
1.2.6. Scientific Analysis and Visualization- 7
1.3 Elements of Pictures created in Computer Graphics 10
1.3.1. Polylines 10
1.32. Text 12
1.3.3. Filled Regions 13
1.3.4. Raster Images 15
1.3.5. Representation of Gray Shades and Color for Raster
Graphics 18
1.4 Graphics Display Devices 22
1.4.1. Line Drawing Displays 22
1.42. Raster Displays 23
1.4.3. Indexed Color and the LUT 26
1.4.4. Other Raster Display Devices 29
1.4.5. Hard Copy Raster Devices 30
1.5 Graphics Input Primitives and Devices 32
1.5.1. Types of Input Graphics Primitives 32
1.5.2. Types of Physical Input Devices 32
1.6. Summary 35
1.7. Further Reading 36

2 Getting Started Drawing Figures 37

2.1 Getting Started Making Pictures 37
2.1.1. Device-independent Programming, and OpenGL 39
2.1.2. Windows-based Programming 40
2.1.3. Opening a Window for Drawing 41
2.2 Drawing Basic Graphics Primitives 42
2.2.1. Examples of Drawing Dot Constellations 47
2.3 Making Line Drawings 51
2.3.1. Drawing Polylines and Polygons 53
2.3.2. Line Drawing using moveto() and lineto() 58
2.3.3. Drawing Aligned Rectangles 59
2.3.4. Aspect Ratio of an Aligned Rectangle 60
2.3.5. Filling Polygons 61
2.3.6. Other Graphics Primitives in OpenGL 62
2.4 Simple Interaction with the Mouse and Keyboard 63
2.4.1. Mouse Interaction 63 ’

2.4.2. Keyboard Interaction 66
Contents

xi

xii Contents

2.5. Summary 67
2.6. Case Studies 68
Case Study 2.1 Pseudorandom Clouds of Dots 68
Case Study 2.2 Introduction to Iterated Function Systems 69
Case Study 2.3 The Golden Ratio and Other Jewels 73
Case Study 2.4 Building and Using Polyline Files 75
Case Study 2.5 Stippling of Lines and Polygons 75
Case Study 2.6 Polyline Editor 76
Case Study 2.7 Building and Running Mazes 77
2.7. Further Reading 79

3 More Drawing Tools 81

3.1. Introduction
3.2. World Windows and Viewports 82
3.2.1. The Mapping from the Window to the Viewport 83
3.2.2. Setting the Window and Viewport Automatically 92
3.3. Clipping Lines 95
3.3.1. ClippingaLine 96
3.3.2. The Cohen-Sutherland Clipping Algorithm 96
3.4. Developing the Canvas Class 100
3.4.1. Some useful Supporting Classes 100
3.42. Declaration of Class Canvas 102
3.43. Implementation of Class Canvas 103
3.5. Relative Drawing 105
3.5.1. Developing moveRel() and lineRel() 105
3.5.2. TurtleGraphics 106
3.6. Figures Based on Regular Polygons 110
3.6.1. The Regular Polygons 110
3.6.2. Variations on n-Gons 112
3.7. Drawing Circles and Arcs 116
3.7.1. Drawingarcs 116
3.8. Using the Parametric Form of a Curve 119
3.8.1. Parametric Forms for Curves 120
3.8.2. Drawing Curves Represented Parametrically 123
3.8.3. Superellipses 124
3.8.4. Polar Coordinate Shapes 126
3.8.5. 3D Curves 127
3.9. Summary 129
3.10. Case Studies 130
Case Study 3.1 Studying the Logistic Map and Simulation of
Chaos 130
Case Study 3.2 Implementation of the Cohen-Sutherland
Clipper in C/C++ 131
Case Study 3.3 Implementing Canvas for Turbo C++ 133
Case Study 3.4 Drawing Arches 135
Case Study 3.5 Some Figures Used in Physics and Engineering 136
Case Study 3.6 Tilings 137
Case Study 3.7 Playful Variations on a Theme 140
Case Study 3.8 Circles Rolling around Circles 141
Case Study 3.9 Superellipses 142
3.11. Further Reading 143

Contents

& Vector Tools for Graphics 144

4.1.
4.2.

4.3.

44.

4.5.

4.6.

4.7.
4.8.

49.
4.10.

Introduction 145

Review of Vectors 147

421 Operations with Vectors 148

422. Linear Combinations of Vectors 149

4.2.3. The Magnitude of a Vector, and Unit Vectors 151

The Dot Product 152

43.1. Properties of the Dot Product 153

432. The Angle Between two Vectors 154

433. The Sign of b-¢; Perpendicularity 154

434. The 2D “Perp” Vector 156

43.5. Orthogonal Projections, and the Distance from a Point
toaLine 157

43.6. Applications of Projection: Reflections 159

The Cross Product of Two Vectors 160

4.4.1. Geometric Interpretation of the Cross Product 162

4.42. Finding the Normal to a Plane 163

Representations of Key Geometric Objects 164

45.1. Coordinate Systems and Coordinate Frames 165

452. Affine Combinations of Points 167

4.53. Linear Interpolation of Two Points 170

454 “Tweening” for Art and Animation 170

4.5.5 Preview: Quadratic and Cubic Tweening, and Bezier
Curves 172

45.6. Representing Lines and Planes 173

Finding the Intersection of Two Line Segments 181

4.6.1. Application of Line Intersections: the Circle Through
Three Points 184

Intersections of Lines with Planes, and Clipping 186

Polygon Intersection Problems 188

4.8.1. Working with Convex Polygons and Polyhedra 188

4.82. Ray Intersections and Clipping for Convex
Polygons 189

4.8.3. The Cyrus-Beck Clipping Algorithm 192

48.4. Clipping against Arbitrary Polygons 194

4.8.5. More Advanced Clipping 196

Summary 197

Case Studies 198

Case Study 4.1. Animation with Tweening 198

- Case Study 4.2. Circles Galore 198

4.11.

Case Study 4.3. Is point Q inside Polygon P? 200

Case Study 4.4. Reflections in a Chamber (2D Ray
Tracing) 200

Case Study 4.5. Cyrus-Beck Clipping 201

Case Study 4.6. Clipping a Polygon Against a Convex Polygon:
Sutherland-Hodgman Clipping 202

Case Study 4.7. Clipping a Polygon against another: Weiler
Atherton Clipping 204

Case Study 4.8. Boolean Operations on Polygons 207

Further Reading 208

xiii

xiv Contents

5 Transformations of Objects 209

5.1
52

53.

5.4.
5:3.

5.6.

5.7
5.8.

5.9.

Introduction 210

Introduction to Transformations 211

5.2.1. Transforming Points and Objects 214

5.22. The Affine Transformations 216

5.2.3. Geometric Effects of elementary 2D Affine

Transformations 217

5.2.4. The Inverse of an Affine Transformation 222

5.2.5. Composing Affine Transformations 223

5.2.6. Examples of Composing 2D Transformations 224

5.2.7. Some Useful Properties of Affinc Transformations 228

3D Affine Transformations 233

5.3.1. The Elementary 3D Transformations 234

5.3.2. Composing 3D Affine Transformations 238

5.3.3. Combining Rotations 238

5.3.4. Summary of Properties of 3D Affine Transformations 243

Changing Coordinate Systems 244

Using Affine Transformations in a Program 247

5.5.1. Saving the CT for Later Use 254 .

Drawing 3D Scenes with OpenGL 258

5.6.1. An Overview of the Viewing Process and the Graphics

Pipeline 259

5.6.2. Some OpenGL tools for Modeling and Viewing 262

5.6.3. Drawing Elementary Shapes Provided by OpenGL 265

5.6.4. Reading a Scene Description from a File 273

Summary 276

Case Studies 278

Case Study 5.1. Doing Your Own Transforming by the CT in
Canvas 278

Case Study 5.2. Draw the Star of Fig 5.39 Using Multiple
Rotations 278

Casc Study 5.3. Decomposing a 2D Affine Transformation 278

Case Study 5.4. Generalized 3D Shears 282

Case Study 5.5. Rotation About an Axis: the Constructive
Approach 283

Case Study 5.6. Decomposing 3D Affine Transformations 284

Case Study 5.7. Drawing 3D Scenes Described by SDL 286

Further Reading 286

6 Modeling Shapes with Polygonal Meshes 287

6.1.
6.2.

Introduction 288

Introduction to Solid Modeling with Polygonal Meshes 288
6.2.1. Defining a Polygonal Mesh 290

6.2.2. Finding the Normal Vectors 292

6.2.3. Properties of Meshes 294

6.2.4. Mesh Models for Nonsolid Objects 295
6.2.5. Working with Meshes in a Program 296
Polyhedra 299

6.3.1. Prisms and Antiprisms 300

6.3.2. The Platonic Solids 302

6.3.3. Other Interesting Polyhedra 307

6.4.

6.5.

6.6.
6.7.

6.8.

Extruded Shapes 310

6.4.1. Creating Prisms 310

6.4.2. Arrays of Extruded Prisms: “Bricklaying” 311

6.4.3. Extrusions with a “Twist” 313

6.4.4. Building Segmented Extrusions: Tubes and Snakes 315

6.4.5. “Discretely” Swept Surfaces of Revolution 320

Mesh Approximatioas to Smooth Objects 321

6.5.1. Representations for Surfaces 322

6.5.2. The Normal Vector to a Surface 323

6.5.3. The Effect of an Affine Transformation 325

6.5.4. Three “Generic” Shapes: the Sphere, Cylinder, and
Cone 326

6.5.5. Forming a Polygonal Mesh for a Curved Surface 329

6.5.6. Ruled Surfaces 331

6.5.7. Surfaces of Revolution 337

6.5.8. The Quadric Surfaces 339

6.5.9. The Superquadrics 342

6.5.10. Tubes Based on 3D Curves 344

6.5.11. Surfaces Based on Explicit Functions of Two
Variables 345

Summary 346

Case Studies
Case Study 6.1.

Case Study 6.2. .

Case Study 6.3.
Case Study 6.4.
Case Study 6.5.

Case Study 6.6.
Case Study 6.7.

Case Study 6.8.
Case Study 6.9.

Case Study 6.10.
Case Study 6.11.
Case Study 6.12.
Case Study 6.13.
Case Study 6.14.

347

Meshes Stored in Files 347

Derivation of the Newell Method 347

The Prism 350

Prism Arrays and Extruded Quad-strips 351
Tubes and Snakes Based on a Parametric
Curve 352

Building Discrete-Stepped Surfaces of
Revolution 352

On Edge lists and Wire-frame Models - 352
Vaulted Ceilings 353

On Platonic Solids 353

On Archimedian Solids 353

Algebraic Form for the quadric Surfaces 353
Superquadric Scenes 354

Drawing Smooth parametric Surfaces 354
Taper, Twist, Bend, and Squash It 355

Further Reading 357

Three-Dimensional Viewing 358

Introduction 359
7.2. The Camera Revisited 359

7.1

7.2.1.
7.22.

Setting the View Volume 360
Positioning and Pointing the Camera 361

7.3. Building a Camera in a Program 366

7.3.1.

“Flying” the Camera 368

7.4. Perspective Projections of 3D Objects 371

741
7.4.2
7.4.3.

Perspective Projection of a Point 372
Perspective Projection of a Line 375
Incorporating Perspective in the Graphics Pipeline 379

Contents XV

Xvi

Contents

7.5,
7.6.

L.
7.8.

Producing Stereo Views 392

Taxonomy of Projections 394

7.6.1. One-,Two-, and Three-Point Perspective 394
7.6.2. Types of Parallel Projections 398

Summary 404

Case Studies

Case Study 7.1.
Case Study 7.2.
Case Study 7.3.
Case Study 7.4.

Case Study 7.5.

405

Flying a Camera through a Scene 405

Stereo Views 406

Creating Parallel Projections 406
Do-it-yourself Viewing (As if OpenGL were

Not Available) 406

Removal of Back Face for Greater Efficiency 406

7.9. Further Reading 407

Rendering Faces for Visual Realism 408

8.1. Introduction 409
8.2. Introduction to Shading Models 413
8.2.1. Geometric Ingredients for Finding Reflected
Light 414
8.2.2. Computing the Diffuse Component 415
8.2.3. Specular Reflection 416
8.2.4. The Role of Ambient Light 419
8.2.5. Combining Light Contributions 420
8.2.6. Adding Color 421
8.2.7. Shading and the Graphics Pipeline 422
8.2.8. Using Light Sources in OpenGL 425
8.2.9. Working with Material Properties in OpenGL 429
8.2.10. Shading of Scenes Specified by SDL 430
8.3. Flat Shading and Smooth Shading 430
83.1. Flat Shading 432
8.3.2. Smooth Shading 433
8.4. Removing Hidden Surfaces 436
8.4.1. The Depth Buffer Approach 437
8.5. Adding Texture to Faces 439
8.5.1. Pasting the Texture onto a Flat Surface 442
8.5.2. Rendering the Texture 444
8.5.3. What Does a Texture Modulate? 451
8.5.4. A Texture Example Using OpenGL 453
8.5.5. Wrapping Texture on Curved Surfaces 457
8.5.6. Reflection Mapping 461
8.6. Adding Shadows of Objects 465
8.6.1. Shadows as Texture 465
8.6.2. Creating Shadows with the Use of a Shadow Buffer 467
8.7. Summary 469
8.8. Case Studies 469
Case Study 8.1. Creating Shaded Objects using OpenGL 469
Case Study 8.2. The Do-it-Yourself Graphics Pipeline 470
Case Study 8.3. Add Polygon Fill and Depth-Buffer Removal
of Hidden Surfaces 420
Case Study 8.4. Rendering Texture 470
Case Study 8.5. Applying Procedural 3D Textures 470

