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Preface

Mappings constitute a powerful method for studying dynamical systems.
They are fundamentally based on a formulation of dynamical equations gov-
erning them as a system of first-order ordinary differential equations. Accord-
ing to the theorem of Cauchy, the solutions of these dynamical equations are
unique and are completely determined by the initial conditions, i.e., there
exists the unique transformation or mapping of the initial conditions into
the final conditions. The surface-to-surface maps (Poincare return map) and
stroboscopic maps introduced by Poincaré (1892-99) replace the dynamics
of a continuous system by a discrete one. These maps have important ad-
vantages in a study of dynamical systems. First, they reduce dimensions of
the system at least by one. They allow one to visualize the dynamics of the
system at certain sections (Poincaré sections) of phase space and thereby
display the global behavior of the system. Many concepts of continuous sys-
tems become more clear when they are formulated using Poincaré maps. For
instance, the study of stability of periodic orbits can be simply reduced to a
study of stability of fixed points of the mappings.

The Hamiltonian formulation of dynamical equations of physical systems
of different nature had a deep impact on the study of dynamical systems
(Hamilton, 1834; Goldstein, 1980; Arnold, 1989). A system with N degrees
of freedom can be described by 2N ordinary differential equations of first
order in the phase space of the canonical coordinates ¢ = (q1,...,qn) and
momenta p = (p1,...,pn), and are determined by a single scalar master
function, known as Hamilton function H. One of the features of Hamiltonian
systems is that it conserves certain invariants in phase space, which constitute
phase space as a symplectic space.

Whenever dissipation is negligible, most fundamental models of physics
and mechanics are described by Hamiltonian systems. Hamiltonian systems
have been the subject of numerous studies during the last two centuries in
physics, mechanics, and astronomy, in problems ranging from the dynamics
of elementary particles in accelerators to the dynamics of planetary objects
in a space (Poincaré, 1892-99; Lichtenberg and Lieberman, 1992; MacKay
and Meiss, 1987; Arnold et al., 1988).

Standard numerical methods of integrating systems of ordinary differen-
tial equations are not ideal for the purposes of solving Hamiltonian systems
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because the numerical approximation introduces non-Hamiltonian perturba-
tions that completely change long-term behavior of the solutions. For this
reason, special integration tools, known as symplectic integrators, have been
developed for the numerical study of Hamiltonian systems (see, for exam-
ple, reviews Sanz-Serna (1992); Sanz-Serna and Calvo (1993, 1994); Feng
(1994)). The methods are constructed to preserve the symplectic properties
of Hamiltonian systems by arranging each integration step to be a canonical
transformation. Symplectic integration methods play an important role in
the study of the long-term evolution of Hamiltonian systems.

Mappings are a powerful tool for studying Hamiltonian systems (see, e.g.,
Lichtenberg and Lieberman, 1992; MacKay and Meiss, 1987; Chirikov, 1979;
Zaslavsky, 1985; Sagdeev et al., 1988; Zaslavsky et al., 1991). These maps are
inherently constructed in symplectic from, and thereby preserve properties
of Hamiltonian systems. This approach is most ideal to study the long-term
evolution of a system, especially in cases where the system exhibits chaotic
behavior caused by exponential divergency of orbits with close initial coor-
dinates in phase space. Symplectic maps have been successfully employed
in many problems of astronomy, plasma physics, fluid dynamics, accelerator
physics, and others.

In spite of the extensive use of symplectic maps for many Hamiltonian
problems during the last four decades, the derivation of generic symplectic
maps from given Hamiltonian equations still remains somehow elusive. There
are several approaches to construct symplectic maps from the continuous for-
mulation of systems. One approach is based on the a priori assumption that
the map has a symplectic form and the generating functions associated with
the map are found from the equations of motion (Lichtenberg and Lieber-
man, 1992). Another method to construct symplectic maps is based on the
assumption that a time-periodic perturbation acting on the integrable system
may be replaced by periodic delta functions, which is equivalent to adding
fast oscillating terms to the Hamiltonian (Wisdom, 1982; Zaslavsky, 1985;
Sagdeev et al., 1988; Zaslavsky et al., 1991). Integration of the equations
of motion along delta functions gives symplectic maps with the time-step
equal to the period of perturbation. In particular, this method was used by
Chirikov to derive the celebrated standard map (Chirikov, 1979; Lichtenberg
and Lieberman, 1992). However, these methods have significant shortcomings
and difficulties, and they do not have a good mathematical justification. Par-
ticularly, they do not establish more general forms of the maps, estimate their
accuracy, and establish relations between variables of the original system and
of the mapping.

Recently in Abdullaev (1999, 2002) a mathematically rigorous method to
derive symplectic maps has been developed. Based on the Hamilton—Jacobi
theory and the classical perturbation theory, it allows one to construct sym-
plectic mappings for generic Hamiltonian systems in a rigorous and consistent
way. It does not encounter the difficulties of more traditional methods.
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The present book is devoted to the systematic theory of symplectic map-
pings for Hamiltonian systems and its application to different Hamiltonian
problems. The method is based on the Hamilton—Jacobi method and pertur-
bation theory of classical mechanics. This book compresses 13 chapters. The
theory of construction of Hamiltonian maps is given in the first five chapters.
Application of mapping methods to study physical problems described by
Hamiltonian systems are given in Chaps. 6-13.

The first chapter contains the essential elements of Hamiltonian dynam-
ics including the different formulations of Hamiltonian equations, constant
of motion, the Hamilton-Jacobi method, and the formalism of action-angle
variables. In the second chapter we have presented the methods of classical
perturbation theory. Time-dependent perturbation theory that constitutes
the basis for the construction of symplectic mappings has been also reiter-
ated in this chapter. The current methods to construct the symplectic maps
for generic Hamiltonian problems are discussed in the third chapter. The
Hamilton—Jacobi method or the method of canonical transformation to con-
struct Hamiltonian mappings is presented in the fourth chapter. There we
also discussed the different forms of symplectic maps, their accuracy, and how
they compare with standard numerical symplectic integration methods. Map-
pings near separatrix of Hamiltonian systems are constructed in Chap. 5 us-
ing canonical transformations of the variables. The construction of mappings
near separatrix is illustrated in Chap. 6 for several Hamiltonian systems. In
Chap. 7 we have applied the mapping methods to analyze some non-standard
issues of Hamiltonian dynamics, namely, regular and chaotic dynamics in non-
twist and non-smooth Hamiltonian systems. The rescaling invariance proper-
ties of Hamiltonian systems near the hyperbolic saddle points are discussed
in Chap. 8. Chaotic transport in a stochastic layer and log e-periodicity (e
is a perturbation amplitude) in lé—degrees of freedom Hamiltonian systems
are studied in Chap. 9. Applications of symplectic mappings to the study
of magnetic field lines in magnetically confinement devices are presented in
the next three chapters. Particularly, in Chap. 10 the Hamiltonian formu-
lation of magnetic field line equations in magnetically confinement devices,
namely in tokamaks. Particularly, we discuss also the mapping methods to
integrate magnetic field line equations, and mapping models of field lines in
toroidal system. Chapters 11 and 12 are devoted to the application of map-
ping methods to study the magnetic structure in special devices of magnetic
confinement, namely, in ergodic and poloidal divertors. In Chap. 13 other ar-
eas of physics, namely, wave propagation problems, accelerator physics and
dynamical astronomy, where mapping methods play an important role, are
discussed.

The book is intended for postgraduate students and researchers, physi-
cists, and astronomers working in the areas of Hamiltonian dynamics and
chaos, and its applications to plasma physics, hydrodynamics, celestial me-
chanics, dynamical astronomy, and accelerator physics. It should also be
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useful for applied mathematicians involved in analytical and numerical stud-
ies of dynamical systems. Readers are supposed to be familiar with the meth-
ods of classical mechanics on the level of Chaps. 1-3 and 7-9 of the book
Mathematical methods of classical mechanics (Springer-Verlag, 1989) by V.1.
Arnold.
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and comments for improvements. Fruitful cooperations with Dr. Karl-Heinz
Finken and Professor Karl-Heinz Spatschek were very beneficial for me. I
have greatly benefited from many discussions with Professor Robert Wolf,
Professor Detlev Reiter, Dr. André Rogister, Professor Radu Balescu, Pro-
fessor Dominique Escande, Dr. Marcin Jakubowski, Mr. Armin Kaleck, Dr.
Masahiro Kobayashi, Dr. Michael Lehnen, Dr. Albert Nicolai, Dr. Hartmut
Gerhauser, Dr. Dirk Reiser, Dr. Mikhail Tokar’, Dr. Bernard Unterberg, Dr.
Todd Evans, Dr. Raymond Koch, Professor Niek Lopes Cardozo, Dr. Boris
Weyssow. The work has been partially performed in the frame of the Son-
derforschungsbereich (SFB) 591 of the Deutsche Forschungsgemeinschaft led
by Professor Reinhard Schlickeiser. I am also grateful to Professor George
Zaslavsky with whom I started my first steps into the area of chaos theory
and cooperated with him during a long period time.
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1 Basics of Hamiltonian Mechanics

In this chapter we shall briefly recall the fundamental principles and methods
of Hamiltonian mechanics which will be used throughout the book. This is
for convenience of the reader and to fix notation. For more details, the reader
might consult Arnold (1989). In particular, we shall give different formula-
tions of Hamiltonian equations, and recall the invariants of motion. Special
emphasis will be given to the Hamilton—Jacobi method and the action-angle
formalism to integrate the equations of motion. These methods will be illus-
trated with the example of the pendulum. Finally, we shall shortly discuss
modern methods of numerical symplectic integration of Hamiltonian systems.

1.1 Hamilton Equations

Consider a classical system with N degrees of freedom with ¢; (i = 1,..., N)
being the position coordinates of the particles of the system. In the classi-
cal (Newtonian) formulation the equations governing the time-evolution of
the system are a set of second order ordinary differential equations for the
positions g;. '

In the Hamiltonian formulation of classical mechanics the state of the sys-
tem is characterized not only by its positions g;, but also its momenta. p;, i.e.,
it is determined by coordinates in the so-called 2/N-dimensional phase space
(q,p): N-coordinates ¢ = (q1,...,gn) and N— momenta p = (p1,...,PN)-
The time-evolution of the system is then governed by a set of 2N ordinary
differential equations of first order in time ¢ Hamilton (1834):

dg; OH dp;  OH

known as Hamilton equations, and determined by only one scalar master
function H = H(q,p,t) known as Hamilton’s function (or Hamiltonian). The
positions ¢; and momenta p; are called canonical variables and time t is an
independent variable.

The Hamilton equations (1.1) with given initial conditions ¢(®) = (q§0)7 e

qg,))) and p(0) = (pgo), e ,ps\?)) at the moment ¢ = 0 have unique solution

®
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2 1 Basics of Hamiltonian Mechanics
0 0 0
gelt) = ity 035 g G0 s B Ve e PR 4
0 0) (0 0
pl(t) p'lz(t q( )7"'7q§V)’pg)""’p( )) (1'2)
(i=1,...,N) at any arbitrary time instant ¢ > 0 or £ < 0.

Geometrically, the trajectories (1.2) may be considered as a flow of a
2N-dimensional fluid in the phase space Lanczos (1962); Guckenheimer and
Holmes (1983). The velocity field v of this fluid flow is v = (¢1,...,4n,
D1,-..,PN). Below we shall see that this flow preserves some invariants of
motion which are important in construction of mappings.

1.1.1 Invariants of Motion

Invariants (or integrals) of motion are most important to study the evolution
of Hamiltonian systems. A function F = F(q,p,t) is called an integral of
motion if it does not change its initial value during the time evolution of the
system. Using the Hamiltonian equations (1.1) it can be formally written as

F
ar_ 3 S HIRH}=0, (1.3)
dt
where the notation {F,®} stands for the Poisson bracket
OF 09 OF 0P
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The first integral of the system is the energy of a conservative sys-
tem if the Hamiltonian H does not explicitly depend on time ¢, i.e., H =
H(q1,...,9n;p1,--.,pn). It follows from (1.3) that dH/dt = 0 since 0H /Ot =
0 and {H, H} = 0, and thus the energy of the conservative system is an in-
tegral of motion, H = E = const.

Another invariant property of Hamiltonian motion (or flow) comes from
its similarity with a “incompressible fluid”, i.e., an arbitrary volume of fluid
element is unchanged during the motion. The condition of incompressibility
for the phase fluid,

v-v=i(%+8p")=o (1.5)
—\0%q Op; ’ '

is satisfied for the canonical equations (1.1) with an arbitrary Hamiltonian
H = H(q,p,t), for conservative, as well as for non-conservative systems. This
property of the Hamiltonian flow leads to conservation of any closed volume
£2(t) of phase space, i.e.,

V= / dqy ...dgndp; ...dpyn = const . (1.6)
£2(t)



