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Introduction

0. A nonholonomic manifold is a smooth manifold equipped with a smooth
distribution. This distribution is in general nonintegrable. The term *holonomic’
is due to Hertz and means ‘universal’, ‘integral’, ‘integrable’ (literally, odog -
entire, vopog — law). ‘Nonholonomic’ is therefore a synonym of ‘nonintegrable’.

A nonholonomic manifold is the geometric (or, more precisely, kinematic)
counterpart of a nonholonomic dynamical system with linear constraints. As we
shall see later, there are two main ways to construct dynamics on nonholonomic
manifolds. They will be referred to (somewhat conventionally) as mechanical
and variational, respectively.

The aim of the present survey is to give a possibly self-consistent account of
the geometry of distributions and to lay down a foundation for a systematic
study of nonholonomic dynamical systems. Our review is somewhat differ-
ent in its character from other reviews in the present series. The reasons for
this are rooted in the peculiar history of the subject as will be explained
below.

Due to lack of space, the present volume includes only the first part of our
survey which comprises geometry of distributions and variational dynamics.
Geometry and dynamics of nonholonomic mechanical systems, nonholonomic
connections, etc., will be described separately. However, in this introduction we
will discuss all these topics, at least in historical aspect. Several problems of
nonholonomic mechanics have already been considered in Volume 3 of this
Encyclopaedia (Arnol'd, Kozlov and Nejshtadt [1985]). In this survey we give a
modern exposition of some earlier results as well as new results which were not
published previously.

1. Nonholonomic geometry and the theory of nonholonomic systems are the
subject of numerous papers. A few of them are due to prominent geometers of
the beginning of our century, others and still more numerous date back to the
early past-war period. Nevertheless, this theory has not gained popularity in a
broader mathematical audience. For instance, in most textbooks on Riemannian
geometry and the calculus of variations there are hardly any facts on these
subjects, save perhaps for the classical Frobenius theorem. Even the term
‘nonholonomic’ is scarcely mentioned. The exceptions are rather rare (e.g. the
recent book of Griffiths [1983] where such results as the Chow-Rashewsky
theorem are exposed).

There are many reasons to feel dissatisfied with this state of affairs. First of
all, nonholonomic systems always held a sufficiently important place in mechan-
ics. Mathematicians have always been thoroughly studying classical dynamics
and the mathematical structures that are inherent to it. In view of this long-
standing tradition the neglect of nonholonomic problems is almost striking. It
is even not commonly known that nonholonomic mechanical problems cannot
be stated as variational problems (cf. below).
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Secondly, nonholonomic variational problems have much in common with
optimal control problems which have been the subject of so many papers in
recent years. This similarity has not been noticed until recently. Although the
statements of nonholonomic variational problems are classical, some features of
their solutions (e.g. the structure of the accessibility set, cf. Chapter 2) makes
them quite close to non-classical problems. However, in textbooks on varia-
tional calculus even existence theorems for the simplest nonholonomic problems
are lacking. The corresponding theorem in Chapter 2 of our survey is based on
a recent observation made in connection with non-classical problems.

Thirdly, problems of thermodynamics (Gibbs, Carathéodory) and of quan-
tum theory (Dirac) also lead to nonholonomic variational problems. A modern
mathematical treatment of this kind of problems is still to be given.

Fourthly, nonholonomic problems are closely connected with the general
theory of partial differential equatons. The best known results that display
this connection are the theorems of L. Hérmander and A.D. Aleksandrov on
hypoellipticity and hypoharmonicity. The study of these questions from a
nonholonomic point of view has been actively pursued in recent years (we in-
cluded some additional references to make this translation more up-to-date).

Finally, the general mathematical theory of dynamical systems (now in its
maturity, as confirmed by the present edition) may well find in nonholonomic
dynamics a vast source of new problems, examples, and paradoxes. We hope to
support this view by the present survey.

2. We shall now give a brief review of the history of our subject. We believe
that it will also explain the isolation of nonholonomic theory from the rest of
mathematics which has continued up to the present time. A systematic develop-
ment of the nonholonomic theory was started in the twenties and thirties, follow-
ing a pattern which dates back to the turn of the century. This pattern was
shaped in a series of classical papers on nonholonomic mechanics, due to many
mathematicians and physicists: Hertz, Voss, Holder, Chaplygin, Appell, Routh,
Woronets, Korteweg, Carathéodory, Horac, Volterra, to mention a few. See
Aleksandrov [1947], and Synge [1936] for a review. As mentioned by Grigoryan
and Fradlin [1982], nonholonomic mechanical problems were already treated
by Euler. However, it was not until the turn of the century that a clear under-
standing of their special features was gained. Hertz’s name (Prinzipien der
Mechanik, 1894) should be ranked first in this respect. A less known source of
the theory comes from physics, namely, from the works of Gibbs and Car-
athéodory on the foundations of thermodynamics. They deal with contact struc-
ture which is the simplest example of nonholonomic structure. As for pure
mathematics itself, in particular, the theory of distributions, which is an indis-
pensable part of nonholonomic theories, we should begin with the theory of
Pfaffian systems and subsequent works on the general theory of differential
equations. The contribution of E. Cartan to this domain was of particular im-
portance. He was the first to introduce differential forms and codistributions.
Unfortunately, these tools were not widely used in nonholonomic problems.
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Finally, we mention one trend of research in geometry going back to Issaly
(1880), or, perhaps, even earlier. We mean the studies of nonholonomic surfaces,
i.e. of nonholonomic 2-dimensional distributions in 3-dimensional space gener-
alizing the ordinary theory of surfaces. This trend has been developed further by
D.M. Sintsov and his school and by some other geometers in the Soviet Union.
However, these works were not sufficiently known even to the experts and did
not play a major role.

3. In the twenties when Levi-Civita and H. Weyl defined the notions of
Riemannian and affine connections and discovered deep relations between me-
chanics and geometry, it became clear that nonholonomic mechanics should
also serve as a source of new geometrical structures which, in turn, provide
mechanics and physics with a convenient and concise language. This mutual
interaction was started by Vranceanu and Synge. In the Soviet Union non-
holonomic problems were activey advertized for by V. Kagan. In 1937 he
proposed the following theme for the Lobachevsky prize competition (Vagner,
[1940]): “To lay down the foundation of a general theory of nonholonomic
manifolds. {...) Applications to mechanics, physics, or integration of Pfaffian
systems are desirable”.

The most important results on nonholonomic geometry and its connections
with mechanics were obtained in the pre-war years and are due to Vranceanu
and Synge, and also to Schouten and V. Vagner. In two short notes and an
article a Romanian mathematician Vranceanu [1931] gave the first precise defi-
nition of a nonholonomic structure on a Riemannian manifold and outlined its
relation to the dynamics of nonholonomic systems. Synge [1927, 1928] has
studied the stability of the free motion of nonholonomic systems. In his work he
anticipated the notion of the curvature of a nonholonomic manifold. It was
formally introduced somewhat later and in two stages. First, Schouten defined
what was later to be called truncated connection, i.e. parallel transport of certain
vectors along certain vector fields. The geodesics of this connection are precisely
the trajectories studied by Synge. Finally, a Soviet geometer V. Vagner made the
next important step in a series of papers which won him the Lobachevsky prize
of Kazan University for young Soviet mathematicians in 1937. He defined (in a
very complicated way) the general curvature tensor which extends the Schouten
tensor and satisfies all the natural conditions (e.g. it is zero if and only if the
Schouten-Vranceanu connection is flat). In his subsequent papers Vagner
extended and generalized his results. (Notably, Schouten was in the jury when
Vagner defended his thesis.)*

4. The geometry of the straightest lines (i.e. classical mechanics of non-
holonomic systems) is the subject of quite a few papers written mainly be-
tween the wars. By contrast, much less was done on the geometry of the
shortest lines, i.e. on the variational theory of nonholonomic systems. The main

! Recently, a more modern exposition of Vagner's main work has appeared (Gorbatenko [1985].)
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contributions bearing on this subject may be listed quite easily. The starting
point for the theory was a paper of Carathéodory [1909] in which he proves that
any two points on a contact manifold may be connected by an admissible curve.
(This statement was already mentioned without proof in earlier papers, e.g. by
Hertz.) It is interesting to notice that Carathéodory needed this theorem in
connection with his work on foundations of thermodynamics, namely in order
to justify the definition of thermodynamical entropy. Although this theorem has
a kinematic nature, it may be used to define a variational, or nonholonomic,
metric sometimes referred to as the Carnot-Carathéodory metric (see Chapter
3). An extension of this theorem to arbitrary totally nonholonomic manifolds
was proved independently by Chow [1939] and by Rashevsky [1938]. Several
results of the classical calculus of variations were extended to the nonholonomic
case by Schoenberg who was specially studying variational problems. A compar-
ison of mechanical and variational problems for nonholonomic manifolds was
given by Franklin and Moore [1931]. An interpretation of nonholonomic varia-
tional problems in mechanical or optical terms has been proposed quite recently
(Arnol'd, Kozlov and Nejshtadt [1985], Karapetyan [1981], Kozlov [1982a, b,
1983]).

5. Before we come to describe the contents of this paper it is worth com-
menting on the reasons which possibly account for the contrast between the
importance of these subjects and their modest position in “main-stream” mathe-
matics. The point is that most papers which bear on the subject were written
extremely vaguely, even if one allows for the usual difficulties of “coordinate
language”. To put it in a better way, at that time it was practically impossible to
give a clear exposition of the theory (which is far from being simple by any
standards). The key concept that was badly needed was that of a connection on
a principal bundle in its almost full generality. However, nothing of the kind was
used at that time. The absence of an adequate language was really painful and
resulted in enormous and completely unmanageable texts. It was difficult to
extract from them even the main notions, to say nothing of theorems. As a
consequence, these papers were not duly understood.? One needed such tools as
jets, germs, groups of germs of diffeomorphisms, etc. This was already clear to
E. Cartan. Although he never studied this subject specially, he frequently stresses
that connections on principal fibre bundles should be used in nonholonomic
problems (ironically, he quotes this idea in the same volume dedicated to the
Lobachevsky prize competition that we already mentioned (Vagner [1940])).

All this may be the reason why the fundamental reshaping of differential
geometry in a coordinate-free manner has left aside the nonholonomic theory.
In the fifties and sixties this theory was already out of fashion and was to remain

V. Vagner wrote in 1948: “The lack of rigour which is typical for differential geometry is reflected
also in the absence of precise definitions of such notions as spaces, multi-dimensional surfaces, etc.
Differential geometry is certainly dropping behind and this became even more dangerous when it
lost its direct contacts with theoretical physics™.
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in obscurity for many years to come. Although many of the more recent papers
on nonholonomic theory already used modern language, they were isolated
from the fertilizing applications which had served as the starting point for
geometers of the prewar time.

After a complete renewal of its language in the fifties and sixties modern
differential geometry became one of the central parts of contemporary mathe-
matics. Along with topology, the theory of Lie groups, the theory of singularities,
etc,, it has created a genuine mathematical foundation of mechanics and theoret-
ical physics in general. An invariant formulation of dynamics permitted to apply
various powerful tools in this domain. Gradually, this process has brought to
bear on nonholonomic theory. Quite recently, the Schouten-Vranceanu connec-
tion was rediscovered by Vershik and Faddeev [1975]. (See also Godbillon
[1969], Vershik [1984].) In this paper nonholonomic mechanics was exposed
systematically in terms of differential geometry. In particular, it was shown that
the local d’Alembert principle regarded as a precise geometric axiom implies the
above mentioned theorem on geodesics in nonholonomic theory.

A good deal of the authors’ efforts was aimed to extract geometrical ideas and
constructions from the papers of the past years and to present them in a modern
form. This goal has not been fully achieved, but it seems indispensable in order
to develop systematically the qualitative and geometric theory of nonholonomic
dynamical systems, in analogy with other theories of dynamical systems (e.g.
Hamiltonian, smooth, ergodic, etc.). We tried to give the basic definitions and
to describe the simplest (3-dimensional) examples. Many mathematicians and
physicists have helped us by pointing out various scattered papers on the
subject. We are particularly indebted to A.D. Aleksandrov, V.I. Arnol’d, A.M.
Vassil’ev, A.M. Vinogradov, A.V. Nakhmann, V.V. Kozlov, N.V. Ivanov, Yu.G.
Lumiste, Yu.l. Lyubich, N.N. Petrov, A.G. Chernyakov, V.N. Shcherbakov,
and Ya.M. Eliashberg.

6. Let us now turn to a brief description of the general structure of the survey.
Nonholonomic dynamics is based on the geometry of distributions which is the
subject of Chapter 1. The simplest and best known example of a nonholonomic
manifold is the contact structure, i.e. a maximally nonholonomic distribution of
codimension 1. Since in the existing literature very little is available on distribu-
tions of larger codimension, we present the main definitions and the most impor-
tant examples of distributions in Section 1 of Chapter 1. In Section 2 we study
generic distributions and the classification problem. In particular, we present
results on the existence of functional moduli of distributions for almost all
growth vectors. We also briefly mention the notion of nilpotentization which is
of particular importance, especially in the recent advances of the theory. (For
more information consult the list of references which was enlarged to make this
translation more up-to-date.) As already mentioned, there are two completely
different dynamics associated with a nonholonomic Riemannian manifold:
the dynamics of the ‘straightests’, or mechanical, and the dynamics of the
‘shortests’, or variational. The terms ‘straightest’ and ‘shortest’ were first intro-
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duced in connection with mechanics by Hertz. The difference between them is
briefly as follows. Using the distribution we may introduce the so called trun-
cated connection (Schouten [1930]). The study of its geodesics and of the
corresponding flow is connected with mechanics of systems with linear con-
straints, e.g., with the problem of rolling, etc. (The general theory comprises also
nonlinear restrictions, cf. for instance Vershik and Faddeev [1975], Vershik and
Gershkovich [1984].) These questions will be considered separately. If we re-
strict the metric to the distribution, we get a new metric on the manifold. Its
geodesics (the shortests) are the subject of variational theory discussed in detail
in Chapter 2. The phase space of a nonholonomic variational problem is the so
called mixed bundle, ie. the direct sum of the distribution regarded as a
subbundle of the tangent bundle and of its annihilator regarded as a subbundle
of the cotangent bundle. As already mentioned, variational problems also admit
a proper mechanical interpretation.

In Section 1 of Chapter 2 we present the main notions and constructions
related to nonholonomic variational problems, such as nonholonomic geodesic
flow, nonholonomic metrics, the nonholonomic exponential mapping, wave
fronts, etc. In Section 2 we compute the accessibility sets for nonholonomic
problems (or control sets, in the language of control theory).

In Chapter 3 we consider nonholonomic variational problems on Lie groups
and homogeneous spaces. As usual, problems on Lie groups offer the most
important class of examples, as well as a training field to develop constructions
and methods which may be then extended to the general setting. In Section 1 we
discuss local questions: the wave front and the e-sphere of a nonholonomic
Riemannian metric. In Section 2 we present a complete description of the
dynamics of systems associated with the nonholonomic geodesic flow on homo-
geneous spaces of 3-dimensional Lie groups. Our approach is based on the wide
use of geometry (more precisely, nonholonomic Riemannian geometry) and of
the theory of nilpotent Lie groups. These two sources provide a better under-
standing of various domains connected with the study of distributions, such as
nonholonomic mechanics, the theory of hypoelliptic operators, etc. At the same
time this approach leads to new problems in geometry and in the theory of Lie
groups.



10 A.M. Vershik, V.Ya. Gershkovich

Chapter 1
Geometry of Distributions

§ 1. Distributions and Related Objects

1.1. Distributions and Differential Systems. In the sequel without further no-
tice all objects, such as manifolds, functions, mappings, distributions, vector
fields, forms, etc., are supposed to be infinitely differentiable.

Definition 1.1. Let X be a real smooth manifold without boundary, and let
T X be its tangent bundle. A subbundle V < TX, i.e. a family {V,},.x of linear
subspaces V, < T, of the tangent spaces which depend smoothly on the point
x € X, is called a distribution on X. If X is connected, the number dim V, =
dim V is called the dimension of the distribution.

In the simplest case a distribution has the following structure: there is a
decomposition of X into submanifolds (leaves), and V, is the tangent space to
the leaf passing through x. In this case the distribution is said to be integrable
and determines a foliation. Its leaves are called maximal integral submani-
folds of the distribution; their dimension is equal to that of V. If dim V = 1, V is
always integrable and its integral submanifolds are (locally) integral curves of
a vector field that generates V. ,

In this survey we shall be mainly interested in the opposite case of
nonintegrable, or nonholonomic distributions. The simplest example of a non-
holonomic distribution is provided by two-dimensional distributions in R?, for
instance, given by V, = Lin{d/dx,, —8/0x, + x,0/0x3}, x = (X;, X3, X3). As is
frequently done, the distribution is defined here as the linear span of vector
fields. Another way to define the same distribution is as follows: V is the null-
space of a I-form x, dx, + dx, which defines a contact structure on R>. The
description of a distribution as the set of null-spaces of a system of differential
forms will also be frequently used.

A k-dimensional distribution on X may be regarded as a section of the
Grassmann bundle associated with TX, ie. of the bundle of k-dimensional
subspaces of the tangent spaces. This construction equips the space ¥,(X) of
such distributions with the natural topology of C*-sections. If X is an open ball,
then, for k > 2, nonintegrable distributions (and even maximally nonintegrable
distributions, see Section 2) form an open dense subset in ¥;(X). On the
contrary, the integrability of a distribution, i.e. the existence of foliation, is an
extremely rare (nowhere dense) event.

Definition 1.2. We shall say that a vector field £ on X is subordinate (or
belongs) to V = {V,} if &, e V, for all xe X. If V, =Lin{¢L, i=1,...,n}, the
vector fields ¢ are said to generate V. An integral curve y of a vector field
belonging to V is called admissible (with respect to V). j, € V,, x € X.
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Recall that the linear space (over R) of smooth vector fields Vect X is a Lie
algebra with respect to the Lie bracket [&, n] = &n — n&. (Vector fields may be
regarded as derivations, and their product means composition of derivations.)
Moreover, Vect X is a C*°(X)-module, since each ¢ € Vect X may be multiplied
by f e C*(X).

If V is a distribution, the set of all vector fields belonging to V (i.e. the set of
its sections) is a C*®-submodule in Vect X. We introduce the following

Definition 1.3. A differential system on X is a linear space of vector fields on
X which is a C*(X)-module’.

As we have explained above each distribution V gives rise to a differential
system N (V). However, there exist other differential systems that correspond to
distributions with singularities, i.e. to fields of linear subspaces in TX of non-
constant dimension. Such distributions appear quite naturally. For instance, the
Lie bracket of two distributions may already have singularities, which motivates
the necessity of the above definition.

Let F be a differential system. The set of all vectors v € T, X for which there
is a vector field & € F such that ¢, = v is a linear subspace V, = T,. If dim V, =
const, F is generated by a distribution {V,} = V, F = N(V); otherwise such a
distribution does not exist.

Proposition. A differential system on a smooth manifold X is the space of
sections of a distribution if and only if it is a projective C*(X)-module.

Recall that if X is an open ball, any projective module is free, hence, in local
problems, differential systems that are free C*(X)-modules are the same as distri-
butions. (A free module is the direct sum of several copies of C*(X), a projective
module is a direct summand of a free module).

Definition 1.4. A distribution V (a differential system N) is involutive if N(V)
(respectively, N) is a Lie algebra; in other words, the Lie bracket of two vector
fields that are subordinate to V (respectively, belong to N) also belongs to V
(respectively, to N).

In the sequel we shall maninly deal with local problems, and so it is useful to
introduce local versions of the main definitions using the language of germs and
Jets. (Concerning the notions of germs, jets, etc, see Brocker and Lander [1975],
Golubitsky and Guillemin [1973].) Let W/, 1 <r < oo, n =1, ..., be the space
of r-jets of vector fields at 0 € R", let w, be the space of germs of vector fields in
a neighborhood of 0 € R". The spaces W, = W, and w, are Lie algebras with
respect to the Lie bracket of vector fields. Moreover, these spaces are modules
over the ring of jets J;° and the ring of germs of functions E,, respectively.

'Some authors use the term ‘differential systems’ for distributions. Since the latter term is well
established in Russian literature we shall use the term ‘differential system’ for a different notion.
Recall that the notion of C*(X)-module means that vector fields from F may be multiplied by an
arbitrary element of C*(X): V¢ e FVf e C*(X) fE€ F.



