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INTRODUCTION

This is a collection of articles about partial differential equations
(p.d.e.) intended to be accessible to nonexperts. The articles vary
somewhat in difficulty. A good background in analysis is recom-
mended, and an elementary partial differential equations course
would be helpful. The presence of a “local p.d.e. expert” to help
one over an occasional hurdle would make for smoother sailing, of
course.

The subject began more than two hundred years ago as a
mathematical study of certain physical and geometric problems.
Laplace’s equation, for example, arose in fluid mechanics as well as
in electrostatics (in the determination of the potential due to an
electric charge distribution on a conducting surface). As their
names indicate, the wave equation dealt with wave propagation
problems arising in acoustics and optics, and the heat equation
arose in the study of heat conduction problems. (For a short history
of Laplace’s equation and its role in the development of p.d.e., and
analysis in general, see [5].)

For many years the study of these three equations constituted the
bulk of research effort in p.d.e. As the more obvious questions
began to be answered for these equations, mathematicians turned to
generalization. For example, the natural question arose: “What
classes of equations are the natural generalizations of the three
basic ones, both with respect to the properties of their solutions, as
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well as with respect to the physical problems giving rise to them?”
This was the origin of the three “types” of equations, elliptic
(describing “steady state” phenomena), hyperbolic (describing
wave-like phenomena), and parabolic (describing diffusion phenom-
ena).

Until the late fifties the study of p.d.e. consisted, for all practical
purposes, of the study of these three “types” of equations. At that
time a new point of view emerged, the study of p.d.e. “independent
of type,” or, p.d.e. “of general type.” The philosophy here is to ask,
what is the relationship between the properties of the solutions of a
(linear) equation and the nature of the coefficients? Very often
there is an important intermediate step: “a priori inequalities.” To
be more precise, certain properties of the solutions are linked to
certain inequalities that solutions of the equation or of a related
equation must satisfy. These inequalities are in turn linked to
formal relationships between the coefficients. Examples of such
properties are smoothness, local existence, and the unique continua-
tion property. Although this theory is now one of the mainstreams
of p.d.e., perhaps the best single source is still Hormander’s book
[6]. Of course we eagerly await that author’s new book on the
subject, which we understand is to appear in the near future.

Despite the emergence of the point of view just described,
research in the area of equations of the traditional types has
continued at an accelerated pace. In elliptic equations, many stub-
born problems have been solved. For accounts of this success story
see [15], [2]. For a neat exposition of higher order boundary
problems see for example [1].

During all this activity, Laplace’s equation has to a large extent
been left out of the limelight. However, very recently there has been
a renewed interest in this “grandfather equation” for problems in
domains with a “rather rough” boundary. Our first article, by
Carlos Kenig and David Jerison, gives an account of some of this
recent research.

However, the minimal surface equation, the nonlinear elliptic
equation par excellence, has been very much in the limelight during
the last several decades, perhaps because of its unique position at
the crossroads between geometry and p.d.e. Our second article, by
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Johannes Nitsche, makes much of the story of this equation accessi-
ble to the nonspecialist.

One of the most dramatic mathematical developments has been
the relationship discovered between parabolic equations and proba-
bility theory. This connection has become a two-way bridge enrich-
ing both disciplines. Our third article by Steven Orey gives an
account of this relationship.

The study of propagation of singularities of solutions of equa-
tions (especially hyperbolic) has been assuming an ever-increasing
role within the subject of p.d.e. Not only is it of physical interest
(for example, it tells us how light rays travel) but it has many
theoretical applications. The article by J. Ralston gives us a new,
essentially self-contained, treatment of this difficult subject. For a
more usual approach using heavier machinery see [13]. See also [9]
for additional physical motivation and background material.

The article by Caffarelli and Littman gives an ‘“elementary”
derivation for a representation formula for solutions to Au —u =0
in R". It illustrates the use of Fourier series as well as generalized
functions (more general than distributions) in p.d.e.

Let us point to a few other areas not covered so far before closing
this introduction. First, there is the general area of singular in-
tegrals, pseudodifferential and Fourier integral operators, which
have done so much to change the map of the subject. In addition to
the well-known recent books by Treves and Taylor, we refer to [3],
[4], [13] for a glimpse of the power that these tools have given to the
subject.

For other problems in hyperbolic equations see [11], [12]; for
scattering theory [8] and [16]; for variational inequalities [10] (first
two chapters); for other articles of interest, see, for example, [7] and
[14].

We hope that the articles in this collection will, at least to some
extent, transfer the excitement of the research process from the
researcher to the reader.

Finally, it is a pleasure to thank the individual contributors for
the great effort they have put into this collection.

WALTER LITTMAN
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BOUNDARY VALUE PROBLEMS ON
LIPSCHITZ DOMAINS

David S. Jerison* and Carlos E. Kenig*

INTRODUCTION

A harmonic function u is a twice continuously differentiable
function on an open subset of R", n > 2, satisfying the Laplace
equation

Harmonic functions arise in many problems in mathematical
physics. For example, the function measuring gravitational or
electrical potential in free space is harmonic. A steady state temper-

*The first author was supported by an NSF post-doctoral fellowship. The second
author was supported in part by the NSF. Part of this article was written while the
first author was visiting the University of Minnesota, whose hospitality he acknowl-
edges.
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ature distribution in a homogeneous medium also satisfies the
Laplace equation.

We will be concerned with the two basic boundary value prob-
lems for the Laplace equation, the Dirichlet and Neumann prob-
lems. Let D be a bounded, smooth domain in R” and let f be a
smooth (i.e., C*) function on dD, the boundary of D. The Dirichlet
problem is to find (and describe) a function u that is harmonic in D,
continuous in D, and equals f on dD. This corresponds to the
problem of finding the temperature inside a body D when one
knows the temperature f on dD. The Neumann problem is to find a
function u that is harmonic in D, belongs to C'(D), and satisfies
du/dN = fon dD, where du/dN represents the normal derivative
of u on dD. This corresponds to the problem of finding the
temperature inside D when one knows the heat flow f through the
boundary surface dD.

Our main purpose here is to describe results on the boundary
behavior of u in the case of smooth domains and the extension of
these results to the case of domains with corners (Lipschitz do-
mains, Definition (1.27)). The boundaries of these domains have
the borderline amount of smoothness necessary for the validity of
theorems like the one stated below.

In a smooth domain, the method of layer potentials yields the
existence of a solution u to the Dirichlet problem with boundary
data f € C**(dD) and the bound

ull cx.a( 5y < A ol flcraapys k=0,1,2,....

O<ax<l

(Uniqueness of u follows immediately from the maximum principle.)
In certain bad (nonsmooth) domains a solution for continuous
boundary data f need not exist. The problem of describing these
domains was settled completely by N. Wiener. (See Section 1.)

TThe C*** norm is the supremum of all derivatives up to order k plus

sup LELx)=DETTxY]

x,y€dD [x—yl*
Bl =k
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What happens if the size of f is measured in the L? norm? This is
of interest as a measure of the variation in data even if we are only
concerned with continuous functions: If f, — £, has small L? norm,
we want to know that the corresponding solutions u, and u, are
near each other. The wisdom of hindsight tells us that as long as we
are going to examine all continuous functions in L? norm, it is no
harder to consider arbitrary functions in L?. Another reason to
consider the L? norm is that it is better suited to the Neumann
problem than C* norms, even on smooth domains. Our first task is
to formulate an appropriate theorem by examining a model case,
namely the unit ball B. The first person to consider this sort of
question was Fatou [19], who examined the case of the unit disc in
R? with f € L™ rather than L2 In the first section we will prove the
following theorem of Fatou type. Let do denote surface measure of
JB.

THEOREM. Suppose that 1< p<oo and f € L?(dB,dc). Then
there exists a unique harmonic function u in B such that lim, _, ,u(rQ)
= f(Q) for almost every Q € dB, and

/a w(0)do(0) <G, fa (@) do(Q), (%)

where u*(Q)=sup, ¢ , <, |u(rQ)|.

The theorem asserts that f.(Q)= u(rQ) converges to f(Q) not
only in L? norm, but also in the sense of Lebesgue’s dominated
convergence. (In the analogous estimates to (*) in the Neumann
problem, u is replaced by the gradient of . In that case the estimate
fails for p = o0, even if du/dN is continuous.)

There is an appropriate endpoint result at p =1 with L'(dB, do)
replaced by finite measures on d B. The result puts positive harmonic
functions in B in one-to-one correspondence with positive measures
on dB. In particular,

COROLLARY. Every positive harmonic function u in B has a finite
radial limit lim, _, ,u(rQ) for almost every Q € dB.
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In the theorem and its corollary, the radial limit can be replaced
by a nontangential limit: if X tends to Q with |X—Q|<
(1+ a)dist( X, dB) for some fixed a> 0, then u(X) has a limit for
almost every Q.

The nature of the solution u to the Dirichlet problem changes as
the domain becomes less smooth. This change is reflected in the
need for alternative techniques to solve for u, but is best described
in terms of a notion called harmonic measure. Let D be a bounded
Lipschitz domain. As we shall see in the first section, Lipschitz
domains are among the domains for which the solution to the
Dirichlet problem exists for any f € C°(dD). Given X € D, the
mapping f — u(X) is a continuous linear functional on C°(9D).
Therefore, by the Riesz representation theorem, there is a unique
Borel measure wX on D such that

u(X)= fa J(@)de¥(2).

wX is called harmonic measure for D evaluated at X. For example,
harmonic measure for B evaluated at the origin is a constant
multiple of surface measure: w®=0/0(3B) (the mean value The-
orem (1.6)).

Fix X, € D, and denote w = w”*°. The importance of harmonic
measure to the boundary behavior of harmonic functions can be
illustrated by the following theorem. If u is a positive harmonic
function, then u has finite nontangential limits almost everywhere
with respect to w (see the corollary above, L. Carleson [9], and
R. Hunt and R. Wheeden [24]). Conversely, given any set E C dD
with w(E) =0, there is a positive harmonic function u in D with
limu(X)=o00 as X = Q for every Q € E.

The difficulty with harmonic measure is that it is hard to
calculate explicitly. In general, harmonic measure may be very
different from surface measure. If D is a C"* domain (see (1.27)),
then harmonic measure and surface measure are essentially identi-
cal in that each is a bounded multiple of the other. This can be
proved by the classical method of layer potentials. Along the same
lines, one can use layer potentials to solve the Dirichlet and
Neumann problems with boundary data in L?. On C! domains (see



