K Programming
NGk Pearls

Second Edition

N\ BCHIBHR i hig AL

POSTS & TELECOM PRESS

P
=
Z

SRR FE

(55 2 hie) (FEThR)

LI

PIBTERRRE (CIP) B

MIEERYL / (38) K4FF| (Bentley, J.) F. —2hR.
—db3: ARHBEHARA, 2006.11
(HORIFRR 38D

ISBN 7-115-15171-7
I. %... II. &... [I. BFR—33L V. TP311.1
T EH R A BE CIP BB T (2006) % 101389 &

kR AL B

Original edition, entitled Programming Pearls (Second Edition), 0201657880 by Jon
Bentley, published by Pearson Education, Inc, publishing as Addison Wesley Professional,
Copyright © 2000 by Lucent Technologies.

All rights reserved. No part of this book may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording or by any
information storage retrieval system, without permission from Pearson Education, Inc.
China edition published by PEARSON EDUCATION ASIA LTD. and POSTS &
TELECOMMUNICATIONS PRESS Copyright © 2006.

This edition is manufactured in the People’s Republic of China, and is authorized for sale
only in People’s Republic of China excluding Hong Kong, Macau and Taiwan.
RFHEARKINERN (REFEPESFE. RVSNTHROGESTHRX) .,
AHHEMA Pearson Education BB HIKE) MABHHIFE. TAFEEREHE,

5 R AR 53
WIBTRIL (SE 2 RRD) (XA
¢ E [3] Jon Bentley
HiEmE Bk

¢ ARBSBHBRHHBRIT kehExXsmse 4 e
HE4% 100061 BTEH 315@ptpress.com.cn
Pk http://www.ptpress.com.cn

b 7T 5% AR ENRIE BB 2> & EN R
FHEBERELERRITHEH
¢ FFAE: 700x1000 1/16
Hgk: 15.5
FH: 280 FF 2006 FE 11 AE 1%
En¥: 1-3000 Mt 2006 4 11 AL 1 KERY
FENEEFIES BF: 01-2006-5089 &
ISBN 7-115-15171-7/TP » 5644
Eft: 28.00 T
RERERLL: (010067132705 EDEFRMAL: (010)67129223

ABEHNEFRITAR RN T —ARIBISPROM, XL AR WISLD
HRDMNFTNRGE. 1FERBRSELHBRRILIMVEARIE, BBR
FRETRRIACIE BB LIRS ROVSRIMEIINES, A
S ISRESEBOMA S SRRDAAVERAE, IXLERBIEB R IR RIS EE
POEARAE. ML, BBEBHT LS NS HVSERTmEMEIESE WY
B, XEARSBREDS/VARLE S IR0VRIE DRIIR AT A IR BRs,
BTR3NS B HRIT AR A RN S W T2 &80 R

ABRESE—IREVE 20T 3 TNHENFAS: MR, By,
REFR, FRBOM, HNEIROFTEREHHITIHS, LRI =S8
BIFTES,

WHAEF R RRE HTH. Fred Brooks 76 (A A#HE) iR T —IE) FH
B, fEEREENATERRKATE P RRACKEE. FRAK—RIHZ Steve
McConnell 7E (AR 4) shA4) R EF KRBT XU, b BT R i 380 T 7%
FRHNEFRBEREE. FENR, BLEREESERE TRRNKN AR
e NER—RRIER AL REEF B#

KFESH

B R EBRIEN LS AERBE NN A @8 TAR TE%N
Wi, B TR RSN NREKIL. EMBEKE T YA BHHHYR, SEK
PR B G L BRF AL RE. B RREFEAMUAESE 5 R, 1T
B EENEF RO BT MEAR KB E .

BN B L ERIE T REFE Communications of the Association for Computing
Machinery -] Programming Pearls %42 (%, 283 ., BT 5T 1986 A HHIE
—RRHR . ABIEEFRWE R RS WARER L, EMAT 3AMNFHEE.

APXEEME—ERR, FEAIMARKESHENSY. —ERAMBAR
(Biltm CHHAERO ZEF P L fB/R B, ANRGRX -) i3 T DA EL BBk A e 24,
NS G R B2 RS

REREDE—EHTUARER, BEBE LRETTEE L. 1
S 1 ERIE S R TR R RGN RS X, B BIREHUK
BRFRAEMAUR. 5 130N A FEBESNE TR, MRABASMU+42
EE, MHEERIFHETHENEF R RTHHE S, BIRESH LR ER T
N EIRTHRF . BRAER 8 b H R A 1 L

BUGEEAZE/AR, EFAME, HEARRBHRIMEE, —ENEE
A5, HATRFRELRIRE MR D LM, BT REFNEMEEEFR NS,
R ERTTROEE, WAREBMAHHM IR BLUAE. mREE, TUER
ERESHRRANBR T RZA S ABENRARFAERTIHE. SEEESH KM

SREKIL (2 R) (EXR)

EMBFARRBENENSERNY, RAREET —LRAFNSEHE, XLHHL
BARFHHE R A

ABRIBFRFE. HERLHE. #7. BEGTENSERHELILEITR
WRE. FLE, APCLERERKENS TRETRRA, Hhafgk, 2F
BiEMgf TR, MR 1 PHEEERESPUEFRN—1 2%, RnhisTo
e A N T BB 4 T T R

XTFRH

APE P RABEEFLLE WL, HRERTIUEIXEEEAE.
X, REFEETERNEFHERTSENGERBE. TUREBHM
(www.programmingpearls.com) K& XLRFRE, KPS THLATHR. WRAA
ER MRS . M L RRE— EHAMEETN . FRIET AN AR %
. BrEAX —RRA I — B SRR 2 A I VR4 36 P SRR A1

APHEFRATHEORBERE: EXEL. RONST. SRREHEREG
B, ERRKATE DX RAEHN, RXBEERTAEEEOEREM. 5.1 R
RPNRT X TIXF R HE .

BPEET ~HRALPH C M CHER, BASHRKBERRNBHILR: £
RBOHZRE I BENRRBENEE . £S5 for i=[0n]% i M 0 BAE n-1. 7EXFR,
B for B3R, EERAFESRRFXE (KEAPFEEHRME), HELHESNE
%%EW(E@¢@ﬁﬁﬂﬁ)ﬂﬁﬁﬁmmmmiﬂﬁ%ﬁm—¢%§ﬁiﬂjﬂﬁ
¥, aray[i jI&VFE— M ATE. :

AHFIH THEERFE “ROVLE” EETOER, “RONE" WEERERI
400MHz 443, 128MB W7, Windows NT 4.0 #fER%. HHEioR TREEEL M
JLENLE ERBITHLR, SHTRIFMEIN—SRARD ., FESRHERATREL
AREREMHIESL. BUEEECONB LN, REESEESSRBHLINE
T,

ME—RE

FRENEABNE—RNLE “BRROBEE—IBR" M5, FEEKLE
“BARFESHA” M.

R GR BT R AR, HEETEANERZ T, HENRARS
E-LERGREE TRAMENRM, FImBEE. Mg, B RE. RE7EKEs
B RFEERBETHNRE, BASHEF RPN ZRBXER A, B—R 8
FEARPRELURE, 5Bt ABRR— AT EA— K04,

B 4 EPRT XA HERN — WX R RN TS 5 ZH AR

[

WOF 3

B WEMER . B-RE 11 ENHELY BERFRZE —BANSE 12 8 RT
FREEE) M 13 (KTFEERR). B IRNE 13 EAEAT —MWEITTE 64KB
ke EBERE, EXRARENET, BerBEE 3.8 ThIERE.
FHE 15 BRXT PR S HEK, HFHRT —SH0NN. dTE0THOEE, §
HIRERTTRUR 4 MR, XAt E— ARSI T 25% KR8,

WEIHNEOIRAER —RATRERERNL, BEE—LEHREREREN
BARRBRIHIT T EHAEE.

SE—hRE

ERBRBTFEANREOIHF, £ Peter Denning M Stuart Lynn B H T #
Communications of the ACM b 1%, Peter B1&HIN ACM THE, fbfFExA%
BRI LR F I T . ACM BHEIIR R, I Roz Steier F1 Nancy Adriance
STRASIH, MIHEREEEERRIAERINRE . RO ERH# ACM [
B, EXHEEAHERRNGRBYMAR. FARBEHFS CACM iks, BiiiE
T RO REXA TR BV EF G TEHIR.

J&¥f Al Aho. Peter Denning. Mike Garey. David Johnson. Brian Kernighan. John
Linderman. Doug Mcllroy #l Don Stanat 7 5 ft-H4th H T 50 AR 40 i 7 A B e —
AN BB LT AR A% 5 & M. Henry Baird. Bill Cleveland. David Gries.
Eric Grosse. Lynn Jelinski. Steve Johnson. Bob Melville. Bob Martin. Arno Penzias.
Marilyn Roper. Chris Van Wyk. Vic Vyssotsky %1 Pamela Zave. Al Aho. Andrew Hume.
Brian Kernighan. Ravi Sethi. Laura Skinger 1 Bjarne Stroustrup 7£4< 1t g it B2 i
BT ERMA). ¥ REA EF 485 BHINY AR T ABWERE - S/, TR
WIERBERIA.

SE AR

Dan Bentley. Russ Cox. Brian Kernighan. Mark Kernighan. John Linderman. Steve
McConnell. Doug Mcllroy. Rob Pike. Howard Trickey ! Chris Van Wyk 748 %3 T iX
—HRA. EEBE TR AT HE R Paul Abrahams. Glenda Childress. Eric
Grosse. Ann Martin. Peter Mcliroy. Peter Memishian. Sundar Narasimhan., Lisa Ricker.
Dennis Ritchie. Ravi Sethi. Carol Smith. Tom Szymanski ! Kentaro Toyama. /B Peter
Gordon At Addison-Wesley [7] 2 4 75 ¥ H R B S B O SIS 25 B

CONTENTS

Part I: PRELIMINARIES

Column 1: Cracking the Oyster

A Friendly Conversation . Precise Problem Statement . Program Design -
Implementation Sketch . Principles . Problems . Further Reading

Column 2: Aha! Algorithms

Three Problems . Ubiquitous Binary Search . The Power of Primitives .
Getting It Together: Sorting . Principles . Problems . Further Reading .
Implementing an Anagram Program

Column 3: Data Structures Programs

A Survey Program . Form-Letter Programming . An Array of Examples .
Structuring Data . Powerful Tools for Specialized Data . Principles . Prob-
lems . Further Reading

Column 4: Writing Correct Programs

The Challenge of Binary Search . Writing the Program . Understanding the
Program . Principles . The Roles of Program Verification . Problems .
Further Reading

Column 5: A Small Matter of Programming

From Pseudocode to C . A Test Harness . The Ant of Assertion . Auto-
mated Testing . Timing . The Complete Program . Principles - Problems
« Further Reading . Debugging

Part II: PERFORMANCE

Column 6: Perspective on Performance
A Case Study . Design Levels . Principles + Problems . Further Reading

Column 7: The Back of the Envelope
Basic Skills . Performance Estimates . Safety Factors . Little’s Law .
Principles . Problems . Further Reading . Quick Calculations in Everyday
Life

Column 8: Algorithm Design Techniques

The Problem and a Simple Algorithm . Two Quadratic Algorithms . A
Divide-and-Conquer Algorithm . A Scanning Algorithm . What Does It
Matter? . Principles . Problems . Further Reading

1

21

33

45

59
61

67

77

2 PROGRAMMING PEARLS

Column 9: Code Tuning 87

A Typical Story . A First Aid Sampler . Major Surgery — Binary Search .
Principles . Problems . Further Reading

Column 10: Squeezing Space 99

The Key — Simplicity . An Illustrative Problem . Techniques for Data
Space . Techniques for Code Space . Principles . Problems . Further
Reading . A Big Squeeze

Part III: THE PRODUCT 113

Column 11: Sorting 115

Insertion Sort . A Simple Quicksort . Better Quicksorts . Principles .
Problems . Further Reading

Column 12: A Sample Problem 125

The Problem . One Solution . The Design Space . Principles . Problems
« Further Reading

Column 13: Searching 133

The Interface . Linear Structures . Binary Search Trees . Structures for
Integers . Principles . Problems . Further Reading . A Real Searching
Problem

Column 14: Heaps 147

The Data Structure . Two Critical Functions . Priority Queues . A Sorting
Algorithm . Principles . Problems . Further Reading

Column 15: Strings of Pearls 161
Words . Phrases . Generating Text . Principles . Problems . Further
Reading
Epilog to the First Edition 175
Epilog to the Second Edition 177
Appendix 1: A Catalog of Algorithms 179
Appendix 2: An Estimation Quiz 183
Appendix 3: Cost Models for Time and Space : 185
Appendix 4: Rules for Code Tuning 191
Appendix 5: C++ Classes for Searching 197
Hints for Selected Problems 201
Solutions to Selected Problems 205

Index 233

parRT: PRELIMINARIES

These five columns review the basics of programming. Column 1 is the history of
a single problem. A combination of careful problem definition and straightforward
programming techniques led to an elegant solution. The column illustrates the central
theme of this book: thinking hard about a real case study can be fun and can also lead
to practical benefits.

Column 2 examines three problems, with an emphasis on how algorithmic insights
can yield simple and effective code. Column 3 surveys the crucial role that the struc-
ture of data can play in software design.

Column 4 introduces program verification as a tool for writing correct code. Veri-
fication techniques are used extensively as we derive subtle (and fast) functions in
Columns 9, 11 and 14. Column 5 shows how we implement those abstract programs
in real code: we use scaffolding to probe a function, to bombard it with test cases, and
to measure its performance.

coLumN I: CRACKING THE OYSTER

The programmer’s question was simple: ‘‘How do I sort a disk file?”’ Before 1
tell you how I made my first mistake, let me give you a chance to do better than I did.
What would you have said?

1.1 A Friendly Conversation

My mistake was to answer his question. I gave him a thumbnail sketch of how to
implement a Merge Sort on disk. My suggestion that he dig into an algorithms text
met with less than enthusiasm — he was more concerned about solving the problem
than furthering his education. I then told him about a disk sorting program in a popu-
lar programming book. The program consisted of about two hundred lines of code in
a dozen functions; I estimated that implementing and testing the code would have
taken the programmer at most a week.

I thought that I had solved his problem, but his hesitation led me back to the right
track. The conversation then went something like this, with my questions in italics.

Why do you want to write your own sort at all? Why not use a sort provided by

your system?

I need the sort in the middle of a large system, and for obscure technical reasons, I
can’t use the system file-sorting program.

What exactly are you sorting? How many records are in the file? What is the
Sformat of each record?

The file contains at most ten million records; each record is a seven-digit integer.

Wait a minute. If the file is that small, why bother going to disk at all? Why not
Jjust sort it in main memory?

Although the machine has many megabytes of main memory, this function is part
of a big system. I expect that I'll have only about a megabyte free at that point.
Is there anything else you can tell me about the records?

Each one is a seven-digit positive integer with no other associated data, and no
integer can appear more than once.

The context makes the problem clearer. In the United States, telephone numbers
consist of a three-digit ‘‘area code’’ followed by seven additional digits. Telephone

3

4 PROGRAMMING PEARLS COLUMN 1

calls to numbers with the ‘‘toll-free’’ area code of 800 (the only such code at the time)
were not charged. A real database of toll-free telephone numbers includes a great deal
of information: the toll-free telephone number, the real number to which calls are
routed (sometimes several numbers, with rules on which calis go where when), the
name and address of the subscriber, and so on.

The programmer was building a small corer of a system for processing such a
database, and the integers to be sorted were toll-free telephone numbers. The input
file was a list of numbers (with all other information removed), and it was an error to
include the same number twice. The desired output was a file of the numbers, sorted
in increasing numeric order. The context also defines the performance requirements.
During a long session with the system, the user requested a sorted file roughly once an
hour and could do nothing until the sort was completed. The sort therefore couldn’t
take more than a few minutes, while ten seconds was a more desirable run time.

1.2 Precise Problem Statement

To the programmer these requirements added up to, *‘How do I sort a disk file?”’
Before we attack the problem, let’s arrange what we know in a less biased and more
useful form.

Input: A file containing at most n positive integers, each less than n, where
n=10". It is a fatal error if any integer occurs twice in the input. No
other data is associated with the integer.

Output: A sorted list in increasing order of the input integers.

Constraints: At most (roughly) a megabyte of storage is available in main memory;
ample disk storage is available. The run time can be at most several
minutes; a run time of ten seconds need not be decreased.

Think for a minute about this problem specification. How would you advise the pro-

grammer now?

1.3 Program Design

The obvious program uses a general disk-based Merge Sort as a starting point but
trims it to exploit the fact that we are sorting integers. That reduces the two hundred
lines of code by a few dozen lines, and also makes it run faster. It might still take a
few days to get the code up and running.

A second solution makes even more use of the particular nature of this sorting
problem. If we store each number in seven bytes, then we can store about 143,000
numbers in the available megabyte. If we represent each number as a 32-bit integer,
though, then we can store 250,000 numbers in the megabyte. We will therefore use a
program that makes 40 passes over the input file. On the first pass it reads into mem-
ory any integer between 0 and 249,999, sorts the (at most) 250,000 integers and writes
them to the output file. The second pass sorts the integers from 250,000 to 499,999,
and so on to the 40™ pass, which sorts 9,750,000 to 9,999,999. A Quicksort would be
quite efficient for the main-memory sorts, and it requires only twenty lines of code (as

COLUMN 1 CRACKING THEOYSTER 5

we'll see in Column 11). The entire program could therefore be implemented in a
page or two of code. It also has the desirable property that we no longer have to
worry about using intermediate disk files; unfortunately, for that benefit we pay the
price of reading the entire input file 40 times.

A Merge Sort program reads the file once from the input, sorts it with the aid of
work files that are read and written many times, and then writes it once.

<>

Work
Files

many
1 Merge 1 _
Input S
. ort
File

The 40-pass algorithm reads the input file many times and writes the output just once,
using no intermediate files.

— 40 [Multipass| 1
Output
Sort)
File

We would prefer the following scheme, which combines the advantages of the previ-
ous two. It reads the input just once, and uses no intermediate files.

1 Wonder 1 —
Input .
; Sort
File

We can do this only if we represent all the integers in the input file in the available
megabyte of main memory. Thus the problem boils down to whether we can repre-
sent at most ten million distinct integers in about eight million available bits. Think
about an appropriate representation.

1.4 Implementation Sketch

Viewed in this light, the bitmap or bit vector representation of a set screams out to
be used. We can represent a toy set of nonnegative integers less than 20 by a string of
20 bits. For instance, we can store the set {1, 2, 3, 5, 8, 13} in this string:

01110100100001000000

The bits representing numbers in the set are 1, and all other bits are 0.

In the real problem, the seven decimal digits of each integer denote a number less
than ten million. We’ll represent the file by a string of ten million bits in which the
i™ bit is on if and only if the integer i is in the file. (The programmer found two mil-
lion spare bits; Problem 5 investigates what happens when a megabyte is a firm limit.)
This representation uses three attributes of this problem not usually found in sorting

6 PROGRAMMING PEARLS COLUMN 1

problems: the input is from a relatively small range, it contains no duplicates, and no
data is associated with each record beyond the single integer.

Given the bitmap data structure to represent the set of integers in the file, the pro-
gram can be written in three natural phases. The first phase initializes the set to empty
by turning off all bits. The second phase builds the set by reading each integer in the
file and turning on the appropriate bit. The third phase produces the sorted output file
by inspecting each bit and writing out the appropriate integer if the bit is one. If n is
the number of bits in the vector (in this case 10,000,000), the program can be
expressed in pseudocode as:

/* phase 1: initialize set to empty */
for i = {0, n)
bit{i] = 0
/+* phase 2: insert present elements into the set »/
for each i in the input file
bit{i} = 1
/+ phase 3: write sorted output =/
for i = [0, n)
if bit[i] == 1
write i on the output file

(Recall from the preface that the notation for i = [0, n) iterates i fromOton—1.)
This sketch was sufficient for the programmer to solve his problem. Some of the
implementation details he faced are described in Problems 2, 5 and 7.

1.5 Principles

The programmer told me about his problem in a phone call; it took us about fifteen
minutes to get to the real problem and find the bitmap solution. It took him a couple
of hours to implement the program in a few dozen lines of code, which was far supe-
rior to the hundreds of lines of code and the week of programming time that we had
feared at the start of the phone call. And the program was lightning fast: while a
Merge Sort on disk might have taken many minutes, this program took little more
than the time to read the input and to write the output — about ten seconds. Solution
3 contains timing details on several programs for the task.

Those facts contain the first lesson from this case study: careful analysis of a small
problem can sometimes yield tremendous practical benefits. In this case a few min-
utes of careful study led to an order of magnitude reduction in code length, program-
mer time and run time. General Chuck Yeager (the first person to fly faster than
sound) praised an airplane’s engine system with the words ‘‘simple, few parts, easy to
maintain, very strong’’; this program shares those attributes. The program’s special-
ized structure, however, would be hard to modify if certain dimensions of the
specifications were changed. In addition to the advertising for clever programming,
this case illustrates the following general principles.

The Right Problem. Defining the problem was about ninety percent of this battle

COLUMN 1 CRACKING THEOYSTER 7

— I'm glad that the programmer didn’t settle for the first program I described. Prob-
lems 10, 11 and 12 have elegant solutions once you pose the right problem; think hard
about them before looking at the hints and solutions.

The Bitmap Data Structure. This data structure represents a dense set over a finite
domain when each element occurs at most once and no other data is associated with
the element. Even if these conditions aren’t satisfied (when there are multiple ele-
ments or extra data, for instance), a key from a finite domain can be used as an index
into a table with more complicated entries; see Problems 6 and 8.

Multiple-Pass Algorithms. These algorithms make several passes over their input
data, accomplishing a little more each time. We saw a 40-pass algorithm in Section
1.3; Problem 5 encourages you to develop a two-pass algorithm.

A Time-Space Tradeoff and One That Isn’t. Programming foiklore and theory
abound with time-space tradeoffs: by using more time, a program can run in less
space. The two-pass algorithm in Solution 5, for instance, doubles a program’s run
time to halve its space. It has been my experience more frequently, though, that
reducing a program’s space requirements also reduces its run time.tf The space-
efficient structure of bitmaps dramatically reduced the run time of sorting. There
were two reasons that the reduction in space led to a reduction in time: less data to
process means less time to process it, and keeping data in main memory rather than on
disk avoids the overhead of disk accesses. Of course, the mutual improvement was
possible only because the original design was far from optimal.

A Simple Design. Antoine de Saint-Exupéry, the French writer and aircraft
designer, said that, ‘‘A designer knows he has arrived at perfection not when there is
no longer anything to add, but when there is no longer anything to take away.”” More
programmers should judge their work by this criterion. Simple programs are usually
more reliable, secure, robust and efficient than their complex cousins, and easier to
build and to maintain.

Stages of Program Design. This case illustrates the design process that is
described in detail in Section 12.4.

1.6 Problems

Hints for and solutions to selected problems can be found in sections at the back
of the book.

1. If memory were not scarce, how would you implement a sort in a language with
libraries for representing and sorting sets?

t Tradeoffs are common to all engineering disciplines; automobile designers, for instance, might trade re-
duced mileage for faster acceleration by adding heavy components. Mutual improvements are preferred,
though. A review of a small car I once drove observed that *‘the weight saving on the car’s basic structure
translates into further weight reductions in the various chassis components — and even the elimination of
the need for some, such as power steering’’.

PROGRAMMING PEARLS COLUMN |

. How would you implement bit vectors using bitwise logical operations (such as
and, or and shift)?

Run-time efficiency was an important part of the design goal, and the resulting
program was efficient enough. Implement the bitmap sort on your system and
measure its run time; how does it compare to the system sort and to the sorts in
Problem 1? Assume that n is 10,000,000, and that the input file contains
1,000,000 integers.

If you take Problem 3 seriously, you will face the problem of generating k integers
less than n without duplicates. The simplest approach uses the first k positive inte-
gers. This extreme data set won’t alter the run time of the bitmap method by
much, but it might skew the run time of a system sort. How could you generate a
file of k unique random integers between 0 and n — 1 in random order? Strive for a
short program that is also efficient.

. The programmer said that he had about a megabyte of free storage, but the code
we sketched uses 1.25 megabytes. He was able to scrounge the extra space with-
out much trouble. If the megabyte had been a hard and fast boundary, what would
you have recommended? What is the run time of your algorithm?

. What would you recommend to the programmer if, instead of saying that each
integer could appear at most once, he told you that each integer could appear at
most ten times? How would your solution change as a function of the amount of
available storage?

[R. Weil] The program as sketched has several flaws. The first is that it assumes
that no integer appears twice in the input. What happens if one does show up
more than once? How could the program be modified to call an error function in
that case? What happens when an input integer is less than zero or greater than or
equal to n? What if an input is not numeric? What should a program do under
those circumstances? What other sanity checks could the program incorporate?
Describe small data sets that test the program, including its proper handling of
these and other ill-behaved cases.

When the programmer faced the problem, all toll-free phone numbers in the
United States had the 800 area code. Toll-free codes now include 800, 877 and
888, and the list is growing. How would you sort all of the toll-free numbers
using only a megabyte? How can you store a set of toll-free numbers to allow
very rapid lookup to determine whether a given toll-free number is available or
already taken?

. One problem with trading more space to use less time is that initializing the space
can itself take a great deal of time. Show how to circumvent this problem by
designing a technique to initialize an entry of a vector to zero the first time it is
accessed. Your scheme should use constant time for initialization and for each
vector access, and use extra space proportional to the size of the vector. Because
this method reduces initialization time by using even more space, it should be con-
sidered only when space is cheap, time is dear and the vector is sparse.

