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Preface

The theory of the Lebesgue integral is still considered as a difficult theory,
no matter whether it is based the concept of measure or introduced by
other methods. The primary aim of this book is to give an approach which
would be as intelligible and lucid as possible. Our definition, produced in
Chapter I, requires for its background only a little of the theory of
absolutely convergent series so that it is understandable for students of
the first undergraduate course. Nevertheless, it yields the Lebesgue
integral in its full generality and, moreover, extends automatically to the
Bochner integral (by replacing real coefficients of series by elements of a
Banach space).

It seems that our approach is simple enough as to eliminate the less
useful Riemann integration theory from regular mathematics courses.
Intuitively, the difference between various approaches to integration may
be brought out by the following story on shoemakers.

A piece of leather, like in Figure 1, is given. The task consists in measuring
its area. There are three shoemakers and each of them solves the task in
his own way.

Fig. 1

The shoemaker R. divides the leather into a finite number of vertical
strips and considers the strips approximately as rectangles. The sum of
areas of all rectangles is taken for an approximate area of the leather
(Figure 2). If he is not satisfied with the obtained exactitude, he repeats
the whole procedure, by dividing the leather into thinner strips.

The shoemaker L. has another method. He first draws a finite number of
horizontal lines. To each pair of adjacent lines he constructs a system of
rectangles, as indicated in Figure 3. He finds the sum of areas of those
rectangles, by multiplying their common height by the sum of lengths of
their bases. He proceeds in the same way with each pair of adjacent lines
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Fig. 2

i

Fig. 3

and sums up the obtained results. If he is not satisfied with the obtained
exactitude, he repeats the whole procedure with a denser set of horizontal
lines.

The third shoemaker applies the following method. He takes a rectangle
a; and considers its area as the first approximation. If he wants a more
precise result, he corrects it by drawing further rectangles, as in Figure 4 or
similarly. It is plain that, in case of Figure 4, the areas of rectangles a4, a.,

a

Fig. 4

a; are to be taken with positive signs, while the area of a, is to be taken
with negative sign.

The reader acquainted with the theory of integration will easily recognize
that the constructions shown in Figures 2 and 3 correspond to the Riemann
and to the Lebesgue integrals, respectively. It is surprising that the
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construction in Figure 4, which is so simple and natural, never was exploited
in integration theory, before. This construction illustrates the idea of our
definition in Chapter I, where the details are presented rigorously in the
analytical language.

The main features of the theory are displayed in Chapters I-VII. We first
select 3 basic properties H, E, M, and further properties of the integral
are derived from them. Consequently, the theory applies not only to the
Lebesgue and to the Bochner integrals, but also to each integral satisfying
H, E, M, e.g., to the Daniell integral (see Chapter VIII, section 5).
Chapters VIII-XV contain some more special topics, selected after the
taste of the author. Each chapter is preceded by a short information
about its contents. There are also two appendices.

The galley proofs of the book were read by my friends Czestaw KIis,
Krystyna Skérnik and my son Piotr Mikusifiski. They introduced a
number of improvements and corrections. It is a pleasure to express my
thanks to them.

Jan Mikusinski.
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Chapter 1
The Lebesgue Integral

We define Lebesgue integrable functions as limits of series of brick
functions (i.e., of characteristic functions of intervals) with a special type
of convergence (section 3). This definition is equivalent to the original
Lebesgue definition, but avoids mentioning measure or null sets. The
integral of an integrable function is obtained, by definition, on integrating
the corresponding series term by term. Although this definition is very
simple, it requires a proof of consistency, for the function can expand in
various series. That proof is preceded by two auxiliary theorems
(Theorem 3.1 and Theorem 3.2) and makes the core of this chapter.

1. Step functions of one real variable

By a brick we shall mean a bounded half-closed interval a < x < b, where
a and b are finite real numbers. A function whose values are 1 at the
points of a brick J, and 0 at the points which do not belong to that
interval, will be called a brick function and the brick J, its carrier. In
other words, a brick function is the characteristic function of a brick, its
carrier. By the integral [f of a brick function f we understand the length
of its carrier: thus, if the carrier is a<x <b, then [f=b—a.

By a step function f we mean a function which can be represented in the
form

F=&fi+++ o+ Malfly (1.1)

where fy, ..., f. are brick functions and A4, .. ., A, are real coefficients. It
is easily seen that the sum of two step functions is again a step function.
Also the product of a step function by a real number is a step function. In
other words, the set of all the step functions is a linear space. We assume
as known the fact that, if necessary, we always can choose the brick
functions fi,..., f, in the representation (1.1) so that their carriers are
disjoint, i.e., have no common points. This implies in particular that the
modulus (absolute value) |f| of a step function is also a step function. By
the integral [f of the step function (1.1) we mean

Jf=MJf1+' : '+Anjfn.

We assume as known the following facts. The value of the integral is
independent of the representation (1.1). This means that, if we have
another representation for the same function

f=rigit- -+ Kpgp



2 I. The Lebesque Integral
then
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The integral has the following properties:

j(f+g)=Jf+jg,

j()\f) = AJf (A real number),
f<g implies jfs Jg.

In other words, the integral is a positive linear functional on the space of
the step functions. Moreover

[s|<[in

We shall still prove

Theorem 1. Given any step function f and a number € >0, there is another
step function g and a number >0 such that

g(x)=f(y)=0 for |x—y|[<m,

[s<see

Proof. Let f=A;fi+---+A,f, and let [a;, b;) (i=1,..., n) be the carrier
of f,. We assume that g is a brick function whose carrier is

[a .
Yo2nn T 2nn/)

This interval is greater than [a; b;), if A;>0, and smaller than [a;, b;), if

€
; <0. i o i
A<O0. If a;— I, = b, I, happens to hold for some i, then we put

=0. Letting n=min|>—|, we evidently have Aig(x)—Afi(y)=0 for

2nA; ’
|x—y|<m and Afg<Aff: +§. Hence the assertion follows for g=

Argit: T Angn.

2. Step functions of several real variables

The functions of q real variables &, . . ., & can be considered as functions
of a point x =(¢y,..., &) in the gq-dimensional space R% By a brick J in
R? we shall mean the set of the points x such that & € J;, where Jy, ..., Jq
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are one-dimensional bricks, as in section 1. In other words, J is the
Cartesian product J=J,X---XJ, of q one-dimensional bricks.

By brick functions we mean characteristic functions of bricks; the bricks
are called the carriers of the corresponding functions. Thus, a brick
function admits the value 1 on its carrier and vanishes outside it. By the
integral [f of a function whose carrier is J=J;X- - - X J, we understand
the product of the lengths of Jy, ..., J,. Thus, if fi, ..., f; are characteris-
tic functions of Ji, ..., J;, we can write

fr=Js[r

where the integrals on the right side have been defined in section 1.
Since our notation is the same in the case of several variables as in the
case of one real variable, the definitions of a step function and of its
integral can be repeated without any change. Also their properties are
word for word the same, and Theorem 1 remains true (provided by |x —y|
we mean the distance between the points x and y). The proofs are
essentially similar to those for a single real variable.

3. Lebesque integrable functions and their integrals
Given any real valued function f, defined in R? we shall write
f=Afi+Aofot--, 3.1)

where f; are brick functions and A; are real numbers, if

1° |A11If1+}kz|jfz+' .- <o, and

2° f(x)=A1fi(x)+ A2fo(x)+- - - at those points x at which the series
converges absolutely.

The functions satisfying (3.1) will be called Lebesque integrable. By the
integral {f we understand the sum

P -

We do not know, at first, whether (f is determined uniquely. However
this will follow from the following basic theorem:

Theorem 3.1. If 1° holds and, for every x, the series A,f(x)+ Azfa(x)+- -+
either converges to a non-negative limit or diverges to +w, then
A]jfl +/\2.“f2+ <=0,

Proof. Let

M= |A1|Jf1+|A2|J'f2+' .
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and let & be any fixed number with 0<e <M. Since M is finite, there is
an index n, such that

Zlmdﬁ<s. (3.2)
no+1
Let n n.+n
g =L AL+ A f (n=1,2,...). (3.3)
1 no+1

By Theorem 1, given any positive number ¢, there are step functions h,
and positive numbers 7, such that

() ha(x)=g.(y) for |x_)’|<77n;
(i1) JhHSJ‘gn+s-2_".

We evidently may assume that the sequence 7, is decreasing.
Let k,=(h1—g1)+- - -+ (h,— g.)+ g. Then k,(x)= h,(x) and, by (i) and
(ii), we have

M ka(x)=gu(y) for |x—y|<mn;
(II) Jkn$Jgn+£;

(III) kn+1 = kn;

the last inequality follows because k.1 =k, +(gn+1— 8n)+ (Hn+1— gn+1)
and from the fact that the differences in the parentheses are non-negative.
We shall show that, given any number § >0, we have

k,=-6 for sufficiently large n. (3.4)

In fact, suppose, conversely, that there is an increasing sequence of
positive integers p, and a sequence of points x, € R? such that k, (x,,) <
—38. It follows from (3.3) that the functions g, are non-negative outside a
fixed bounded interval (brick) J. Thus all the x, must belong to J.
Consequently, there is a subsequence ¢, of p, such that x, converges to a
limit y. Of course

k,(x)<—8 (n=1,2,...). (3.5)

On the other hand, there is an index n, > n, such that g, (y)>—38, for the
sequence g, converges, at every point x, to a positive limit or diverges to
«. Hence by (I) we have h, (x)>—8 for |x —y|<m,,. Since x, —y, there
exists an index r > n, such that |x, — y| < n,,. Consequently, we have by (III),
k. (x,)= k,(x,)>—8, which contradicts (3.5). This proves that (3.4) is
true.

Since all the k,, are non-negative outside J, we may write instead of (3.4),
k, =—0&k for sufficiently large n, where k is the characteristic function of J.
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The function k does not depend on §. Thus, we can choose & as small
as to get the inequality [k, =—¢ for sufficiently large n. Hence and from
(IT) we obtain [g,=—2¢ for large n, i.e.,

nytn

ZAjf+ ZlAdf> 2¢

no+1

for sufficiently large n. Letting n— %, we hence get

i)‘fjﬁ + i IMIJ‘fi =—2e.

no+1

But |A;|< A, +2 |\, thus

i MJ’fi +2 i I)\iljf,- =

1 no+1

and by (3.2)
i A,J’f, =—4e¢.

Since £ may be chosen arbitrary small, we have Z Aiffi=0, which is the
required inequality.
From Theorem 3.1 we obtain, as a corollary,

Theorem 3.2. If f is integrable and f=0, then [f=0.

Proof. Let £ be any positive number and let (3.1) hold. There is an index
no such that (3.2) holds. At all the points where series (3.1) converges
absolutely, we have

ZAf+Z|Mf>0 (3.6)

no+1

At the remaining points series (3.6) diverges to . Thus, by Theorem 3.1,
2 Afjfﬁ 2 IAiljﬁBO- 3.7)
g | no+1

Since |A;|<A;+2|A|, this implies
2, Aijfi+2 2 il §fi=0. (3.8)
;i | no+1

Hence, in view of (3.2), we obtain ), A;ff;=—2¢ and, by the definition of

1
the integral, f[f=—2e¢. Since ¢ is arbitrary, the inequality.{f=0 follows.

From Theorem 3.2 it is easy to deduce the uniqueness of the integral ff.
Suppose that we have, besides (3.1), another expansion of the same
function

f=Kkigit+Kkagot+---. (3.9)



