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PREFACE

There are many ways of developing the theory of measure and inte-
gration. In the present book measure is studied first as the primary
concept and the integral is obtained later by extending its definition
from the special case of ‘simple’functions using monotone limits. The
theory is presented for general measure spaces though at each stage
Lebesgue measure and the Lebesgue integral in B™ are considered as
the most important example, and the detailed properties are estab-
lished for the Lebesgue case.

The book is designed for use either in the final undergraduate year
at British universities or as a basic text in measure theory at the post-
graduate level. Though the subject is developed as a branch of pure
mathematics, it is presented in such a way that it has immediate
application to any branch of applied mathematics which requires the
basic theory of measure and integration as a foundation for its
mathematical apparatus. In particular, our development of the
subject is a suitable basis for modern probability theory — in fact this
book first appeared as the initial section of the book Introduction to
measure and probability (Cambridge University Press, 1966) written
jointly with J. F. C. Kingman.

The book is largely self-contained. The first two chapters contain
the essential parts of set theory and point set topology; these could
well be omitted by a reader already familiar with these subjects.
Chapters 3 and 4 develop the theory of measure by the usual process
of extension from ‘simple sets’ to those of a larger class, and the
properties of Lebesgue measure are obtained. The integral is defined
in Chapter 5, again by extending its definition stage by stage, using
monotone sequences. Chapter 6 includes a discussion of product
measures and a definition of measure in function space. Convergence
in function space is considered in Chapter 7, and Chapter 8 includes
a treatment of complete orthonormal sets in Hilbert space. Chapter 9
deals with special spaces; differentiation theory for real functions of
a real variable is developed and related to Lebesgue measure theory,
and the Haar measure on a locally compact group is defined.

Starred sections contain more advanced material and can be
omitted at a first reading.

It will be clear to any reader familiar with the standard treatises
that this book owes much to what has gone before. I do not claim any
particular originality for the treatment, but the form of presentation
owes much to my experience of teaching this subject — at Birmingham
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University, Cornell University and the University of London — and I
readily acknowledge the stimulus received from this source. I am
grateful to Dr B. Fishel and Professor G. E. H. Reuter who made
helpful criticisms of an early draft, and to a great number of students
and colleagues who pointed out misprints and errors in the first
edition. However my main debt of gratitude is to Professor J. F. C.
Kingman who was co-author of the first edition of this book, and who
was much involved in every detail of it.

S.J.T.
London
December 1972
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THEORY OF SETS

1.1 Sets

We do not want to become involved in the logical foundations of
mathematics. In order to avoid these we will adopt a rather naive
attitude to set theory. This will not lead us into difficulties because in
any given situation we will be considering sets which are all contained
in (are subsets of) a fixed set or space or suitable collections of such sets.
The logical difficulties which can arise in set theory only appear when
one considers sets which are ‘too big’—like the set of all sets, for
instance. We assume the basic algebraic properties of the positive
integers, the real numbers, and Euclidean spaces and make no attempt
to obtain these from more primitive set theoretic notions. However,
we will give an outline development (in Chapter 2) of the topological
properties of these sets.

In a space X aset & is well defined if there is a rule which determines,
for each element (or point) z in X, whether or not it is in . We write
zeE (read ‘z belongs to E’) whenever z is an element of E, and the
negation of this statement is written z¢ E. Given two sets E, F we
say that F is contained in F, or E is a subset of F, or F contains E
and write £ < F if every element x in E also belongs to F. If E = F
and there is at least one element in F but not in E, we say that Z is a
proper subset of F'.

Two sets E, F are equal if and only if they contain the same ele-
ments; i.e. if and only if £ < F and F < E. In this case we write
E = F.This means that if we want to prove that Z = F we must prove
both ze B> z¢F and ze F = ze K (the symbol = should be read
‘implies’).

Since a set is determined by its elements, one of the commonest
methods of describing a set is by means of a defining sentence: thus
E is the set of all elements (of X) which have the property P (usually
delineated). The notation of ‘braces’ is often used in this situation

E = {z: x has property P}

but when we use this notation we will always assume that only
elements z in some fixed set X are being considered—as otherwise
logical paradoxes can arise. When a set has only a finite number of
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elements we can write them down between braces E = {z,y,2,a,b}.
In particular {z} stands for the set containing the single element 2.
One must always distinguish between the element z and the set {z},
for example, the empty set @ defined below is not the same as the class
{ @} containing the empty set.

Empty set (or null set)

The set which contains no elements is called the empty set and will
be denoted by . Clearly

@ ={x:z+2z}, and & < E forall sets £.

In fact since @ contains no element, any statement made about the
elements of @ is true (as well as its negative).

There are some sets which will be considered very frequently, and
we consistently use the following notation:

Z, for the set of positive integers,

Q, for the set of rationals,

R = R}, for the set of all real numbers,

G, for the set of complex numbers,

R7, for Euclidean n-dimensional space, i.e. the set of ordered n-
tuples (z,, %, ..., %,) where all the z; are in R.

We assume that the reader is familiar with the algebraic and order
properties of these sets. In particular we will use the fact that Z
is well ordered, that is, that every non-empty set of positive integers
has a least member: this is equivalent to the principle of mathematical
induction.

We frequently have to consider sets of sets, and occasionally sets
of sets of sets. It is convenient to talk of classes of sets and collections
of classes to distinguish these types of set, and we will use italic
capitals 4, B, ... for sets, script capitals &7, %, €, ... for classes and
Greek capitals A, T',... for collections. Thus Ce% is read ‘the set C
belongs to the class€’; and & < % means that every set in the class &/
is also in the class Z.

Cartesian product

Given two sets F, F' we define the Cartesian (or direct) product £ x F
to be the set of all ordered pairs (z,y) whose first element z€ £ and
whose second element y € F'. This clearly extends immediately to the
product E; x By, x ... x B, of any finite number of sets. In particular
it is immediate that R”?, Euclidean n-space, is the Cartesian product
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of n copies of R. For an infinite indexed class {E;,1 €I} of sets, the

product [T E, is the set of elements of the form {a;, €I} with a;€ B,
i€
for each se 1.

Exercises 1.1
1. Describe in words the following sets:

(i) {teR:0<t< 1}

(i) {(x,y)eR*:2®+y? < 1}

(iii) {k€Z:k = n? for some neZ};

(iv) {keZ:nlk=>n=1 or k};

(v) {A:Eed};

(vi) {B:B< E}.

2. Show that the relation < is reflexive and transitive, but not in gen-
eral symmetric.

3. The sets X x (Y xZ) and (X x Y)xZ are different but there is a
natural correspondence between them.

4. Suppose z is an element of X and 4 = {x}. Which of the following
statements are correct: red,ze X,z < 4,2 < X, deX, Ac X, A < x?

5. Suppose P(a) and @Q(x) are two propositions about the element such
that P(a) = Q(a). Show that {a: P(a)} < {«: Q(x)}.

1.2 Mappings

Suppose 4 and B are any two sets: a function from 4 to B is a
rule which, for each element in A4, determines a unique element in B.
We talk of the function f and use the notation f: A - B to denote a
function f defined on 4 and taking values in B. For any z€ 4, f(x)
means the value of the function f at the point # and is therefore an
element of the set B: we therefore avoid the terminology (common
in older text books) ‘the function f(z)’. The words mapping and
transformation are often used as a synonym for function.

For a given function f: 4 - B, we call 4 the domain of f and the
subset of B consisting of the set of values f(z) for « in 4 is called the
range of f and may be denoted f(4). When f(4) = B we say that f
is a function from A4 onto B. Given a function f: 4 - B, by definition
f(z) is a uniquely determined element of B for each z € 4; if in addition
for each y in f(4) there is a unique xe A (we know there is at least
one) with y = f(x) we say that the function fis (1,1). Another shorter
way of saying this is that f: 4 — Bis (1, 1) if and only if for z,,z,e 4,

@y F 2y = f(2) + flzy).
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Given f: A — B there is an associated f: &/ - %, where & is the class
of all subsets of 4 and & is the class of all subsets of B, defined by

f(B) ={yeB:3zeE with y = f(x)}

for each E < A. (the symbol 3 should be read, ‘there exists’: i.e. the
set described by {x € E: y = f(x)} is not empty). There is also a function
f1: B — o defined by

fUF) = fwed:f@)eF),

for each F < B. The set f~1(F) is called the inverse image of F under f.
Note that if yeB—f(4), then the inverse image f~({y}) of the one
point set {y} is the empty set. If f: 4 - B is (1,1) and yef(4), then
it is clear that f~* ({y}) is a one point subset of 4, so that in this case
(only) we can think of f~* as a function from f(4) to 4. In particular,
if f: A - Bis (1,1) and onto there is a function f~1: B — 4 called the
tnverse function of f such that f-(y) = z if and only if y = f(x).

Now suppose f: 4, - B, g: A, - B are functions such that 4, > 4,
and f(z) = g(x) for all # in 4,: under these conditions we say that f
is an extension of g (from A4, to A,) and g is the restriction of f (to 4,).
For example, if

g(x) = cosz (xeR);
f(x+1iy) = coszcoshy+isinzsinhy (z +iyeC);
then f: C — G is an extension of g: R - C from R to C, and the usual
convention of designating both fand g by ‘ cos’ obscures the differences
in their domains.

If we have two functions f: 4 — B, g: B — C the result of applying
the rule for g to the element f(x) defines an element in C for all ze 4.
Thus we have defined a function %2: 4 — C which is called the composi-
tion of f and g and denoted gof or g(f). Thus, for ze 4

h(z) = (gof)= = g(f(x)) e C.
Note that, if f: 4 - B is (1,1) and onto we could define the inverse
function f-!: B - A4 as the unique function from B to A such that
(fof ") () =y forall yeB,
(fof)(x) =2 forall zeA.

Sequence

Given any set X a finite sequence of n points of X is a function from
{1,2,...,n} to X. This is usually denoted by =z,,,,...,z, where
z;€ X is the value of the function at the integer ¢. Similarly, an infinite
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sequence in X is a function from Z to X (where Z is the set of positive
integers). This is denoted z,,,, ...,or {z;} (¢ = 1,2,...), or just {z;}
where 2, is the value of the function at ¢, and is called the sth element,
of the sequence. Given a sequence {n} of positive integers (that is, a
function f:Z - Z where f(i) = n;) such that n, > n,; for ¢ > j, and a
sequence {z,;} of elements of X (a function g: Z — X) it is clear that the
composite function g of: Z - X is again a sequence. Such a sequence
is called a subsequence of {z;} and is denoted {z,} (¢ = 1,2,...). Thus
{x,,} is a subsequence of {z,} if n;eZ for all i€ Z, and i > j = n; > n,.

©
We can think of a sequence as a point in the product space IT X,
i=1

where X; = X for all i. More generally a point in the product space
IT X, with X; = X for eI can be identified as a function f: I - X.

tel

Exercises 1.2

1. Suppose f:R — R is defined by f(x) = sinz. Describe each of the
following sets:

0L 1) 42 fMyi0<y <)
2. Suppose f: A - B is any function. Prove

(i) E < f-Yf(E)), for each E < A4;
(ii) F > f(f-X(F)), for each F < B;

and give examples in which there is not equality in (i), (ii).

3. Suppose f: 4 - B, g: B> C are functions and % = gof: show that
h~Y(E) = f-[g~Y(E)] for each E < C.

4. fA<B<cC,f:A>X,9: B> X, h: C > X are such that % is an
extension of g and g is an extension of f, prove that f is the restriction of
toA.

S. Show that the restriction of a (1, 1) mapping is (1, 1).

6. Suppose m, neZ, A is a set with m distinct elements and B is a set
with » distinct elements. How many distinct functions are there from 4
to B?

1.3 Cardinal numbers

If there is a mapping f: A — B which is (1,1) and onto, then it is
reasonable to say that there are the same number of elements in 4
as there are in B. In fact, for finite sets, the elementary process of
counting sets up such a mapping from the set being counted to the
integers {1, 2, ...,n}, and from experience we know that if the same
finite set of objects is counted in different ways we always end up with
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the same integer n. (This fact can also be deduced from primitive
axioms about the integers.) We say that the set 4 is equivalent to the
set B, and write A ~ B if there is a mapping f: 4 - B which is (1,1)
and onto. It is clear that ~ is an equivalence relation between sets
in the sense that it is reflexive, symmetric and transitive, and we can
therefore form equivalence classes of sets with respect to this relation.
Such an equivalence class of sets is called a cardiral number, but by
noting that the equivalence class is determined by any one of its mem-
bers, we see that the easiest way to specify a cardinal number is to
specify a representative set. Thus any set which can be mapped (1,1)
onto the representative set will have the same cardinal. As is usual
we shall use the following notation:

the cardinal of the empty set & is 0;

the cardinal of the set of integers {1, 2, ...n} is n;
the cardinal of the set Z of positive integers is ¥,;
the cardinal of the set R of real numbers is c.

Since Z is ordered we can clearly order the cardinals of finite sets
by saying that 4 has a smaller cardinal than B if 4 is equivalent to a
proper subset of B. This definition does not work for infinite sets as
Sheinappings n—>2" or n-—>n?
map Z onto a proper subset of Z and are (1, 1). Instead we say that the
cardinal of a set A is less than the cardinal of the set B if there is a
subset B; < B such that A ~ B; but no subset 4, < 4 such that
A, ~ B.

From this definition of ordering we consider the following state-
ments, where m, n, p denote cardinals

(i) m<nn<p=>m<p;

(ii) at most one of the relations m < n, m =n, n < m holds so
that m < n,m < m=>m = n.

(iii) at least one of the relations m < n, m = n,n < m holds.

Now (i) follows easily from the definition, for let M, N, P be sets with
cardinals m,n, p and suppose N; < N, P, < P with M ~ N,, N ~ P,.
The mapping f: N - P, when restricted to N, gives an equivalence
N, ~ P, < P, so that M ~ P, < P. Further if P ~ M; < M the map-
ping g: M — N, when restricted to M, shows P ~M, ~ N, = N which
contradicts n < p. (ii) can also be deduced from the definition (see
exercise 1.3 (5)), though this requires quite a complicated argument:
(i) is known as the Schréder—Bernstein theorem. However, the truth
of (iii)—that all cardinals are comparable—cannot be proved without
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the use of an additional axiom (known as the axiom of choice) which
we will discuss briefly in §1.6. If we assume the axiom of choice or
something equivalent, then (iii) is also true.

A set of cardinal ¥, is said to be enumerable. Thus such a set
4 ~ Z so that the elements of 4 can be ‘enumerated’ as a sequence
@,,ay, ... in which each element of 4 occurs once and only once. A set
which has a cardinal m < ¥, is said to be counfable. Thus E is countable
if there is a subset A < Z such that £ ~ 4, and a set is countable if it
is either finite or enumerable.

Given any infinite set B we can choose, by induction, a sequence
{b;} of distinct elements in B and if B, is the set of elements in {b;}
the cardinal of B, is ¥,. Hence if m is an infinite cardinal we always
have m > ¥,. By using the equivalence

by < by,
between B, and the proper subset B, = B, where B, contains the even
elements of {b;} and the identity mapping

bob for beB-B,

we have an equivalence between B = B, u (B—B,) and B,u (B— B,),
a proper subset of B. This shows that any infinite set B contains a
proper subset of the same cardinal.

In order to see that some infinite sets have cardinal > ¥, it is
sufficient to recall that the set {reR:0 < z < 1} cannot be arranged
as a sequence.t Now 7—'tan—1x+} = f(x), ze R defines a mapping f:
R — (0, 1) which is (1, 1) and onto so that R has the same cardinal as
the interval (0, 1) and we have ¢ > ¥,. It is worth remarking that a
famous unsolved problem of mathematics concerns the existence or
otherwise of cardinals m such that ¢ > m > Ny- The axiom that no
such exist, that is that m > No=m > c is known as the continuum
hypothesis.

The fact that there are infinitely many different infinite cardinals
follows from the next theorem, which compares the cardinal of a set
E with the cardinal of the class of subsets of E.

Theorem 1.1. For any set E, the class € = €(E) of all subsets of E
has a cardinal greater than that of E.

Proof. For sets E of finite cardinal n, one can prove directly that
the cardinal of ¢(E) is 2", and an induction argument easily yields
n < 2" for neZ. However, the case of finite sets ¥ is included in the
general proof, so there is nothing gained by this special argument.

T See, for example, J. C. Burkill, 4 First Course in Mathematical Analysis (Cam-
bridge, 1962).
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Suppose 2 is the class of one points sets {x} with zeE. Then
2<% and E ~ 2 because of the mapping z« {z}. Therefore it is
sufficient to prove by (ii) above, that € is equivalent to no subset
E, < E. Suppose then that ¢:% — E, is (1,1) and onto and let
x:E, % denote the inverse function. Let A be the subset of E,

defined by A={zeE, z¢x).

Then A €% so that ¢(4) = z e B,. Now if z,e 4, x(x,) = A does not
contain z, which is impossible, while if z, ¢ 4, then 2, is not in y(,)
80 that zye A. In either case we have a contradiction. ]

It is possible to build up systematically an arithmetic of cardinals.
This will only be needed for finite cardinals and ¥, in this book, so
we restrict the results to these cases and discuss them in the next
section.

Exercises 1.3
1. Show that (0,1] ~ (0,1) by considering f defined by
f(x)y=%—z, for }<x<l;
=$-2, for }<z<
<

=g§—z, for i<z

i
ek~ for — <wg sy
Deduce that all intervals (a, b), (a, b], [, b] or [a,b) with a < bhave the same
cardinal c.

2. Every function f: [@,b] - R which is monotonic, i.e.
a < 2 <2 < b=flzy) < fl@y),

is discontinuous at the points of a countable subset of [a, b].

Hint. Consider the sets of points x where the size of the discontinuity
d(z) = f(x+0)—f(x—0) satisfies 1/(r+1) < d(x) < 1/n and prove this is
finite for all # in Z.

3. Show that Rz ~ R.
Hint.
(‘@1a505...,°b,bybg...) > b a,D,...

defines a (1,1) mapping between pairs of decimal expansions and single
expansions of numbers in (0,1). Modify this mapping to eliminate the
difficulty caused by the fact that decimal expansions are not quite unique.

4. Prove that a finite set E of cardinal m has 2™ distinct subsets.

5. Suppose 4, < 4,B, < B,4, ~ Band 4 ~ B;. Construct a mapping
to show that 4 ~ B.
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Hint. Suppose f: 4 - B,, g: B> A4, are (1,1) and onto. Say x (in either
A or B) is an ancestor of y if and only if y can be obtained from 2 by succes-
sive applications of f and g. Decompose 4 into 3 sets 4,, 4,, 4; according
as to whether the element « has an odd, even or infinite number of ancestors
and decompose B similarly. Consider the mapping which agrees with f
on 4, and 4;, and with g~* on A4,.

1.4 Operations on subsets

For two sets A, B we define the unton of A and B (denoted 4 v B)
to be the set of elements in either 4 or B or both. The intersection
of A and B (denoted 4 n B) is the set of elements in both 4 and B.

Fig. 1

If 4 < X, the complement of A with respect to X (denoted X — A4)
is the set of those elements in X which are not in 4. We also use
(4 —B) to denote the set of elements in 4 which are not in B for
arbitrary sets 4, B. For any two sets 4, B the symmetric difference
(denoted A A B)is (A — B) u (B— A), that is the set of elements which
are in one of 4, B but not in both. Note that AA B = BA 4.

These finite operations on sets are best illustrated by means of a
Venn diagram. In this some figure (like a rectangle) denotes the whole
space X and suitable geometrical figures inside denote the subsets
4, B, etc. It is well known that drawing does not prove a theorem, but
the reader is advised to illustrate the results of the next paragraph
by means of suitable Venn diagrams (see Figure 1).

The operations u,n,A satisfy algebraic laws, some of which are
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listed below. We assume the reader is familiar with these, so proofs
are omitted.

i) AvB=BuA, AnB=BnA;

(i) AuB)uC=A4Auv(Bul), (AnB)AnC=An(Bn0);

(i) An(BuC)=(AnB)u(4n0),
Auv(BnC)=(4AuB)n(4uv0);

(iv) Advg =4, Ang =g,

(v) fA<X, then AvX =X, AnX=A4;

(vi) ifA<X, B< X, then X—(4duB)=(X—-4)n(X-B),

X—(AnB)=(X—-4)v(X-B);
(vi) AuB=(AAB)A(AnB), A—-B=AA(AnB).

A similarity between the laws satisfied by n, u and the usual algebraic
laws for multiplication and addition can be observed (in fact the older
notation for these operations is product and sum) but the differences
should also be noted: in particular the distributive laws, (iii) above,
are different in the algebra of sets. (vi) above will be generalized and
proved as a lemma—it is known as de Morgan’s law.

Given a class € of subsets 4, the union U{4;4 €%} is the set of
elements which are in at least one set 4 belonging to € and the infer-
section N {A;Ae%} is the set of elements which are in every set 4
of . If the class % is indexed so that % consists precisely of the sets
A,, (eel), then we use the notations U, .;4,,N ¢ 14, for the union
and intersection of the class. In particular when % is finite or enumer-
able it is usual to assume that it is indexed by {1, 2, ...,n} or Z respec-
tively and the notation is

n n @ ]
U4, N4, U4, NA,.
i=1 i=1 i=1 i=1
When the class € is empty, that is I = &, we adopt the conventions
UE,= 2, NE,=X, thewholespace.
a€l a€el
This ensures that certain identities are valid without restriction on I.

Lemma. Suppose E,,acl is a class of subsets of X, and E, is one set
of the class, then
) NE, B <UEL,;

ael a€l
(i) X-U E,= N (X-E,);
ael ael

(i) X—NE,= U X-E).

a€l a€l



