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Chapter 1

Introduction

§1. What Is Linear Programming?

Perhaps the earliest examples of mathematical models for analyzing
and optimizing the economy were provided almost 250 years ago
by a French economist. In his Tableau Economique, written in 1758,
Francois Quesnay (1694-1774) explained the interrelation of the roles
of the landlord, peasant, and artisan in eighteenth-century France by
considering several factors separately. For example, there are “The
Economical Tableau considered relative to National Cash,” and “The
Economical Tableau considered in the Estimation of the Produce and
Capital Stock of Every Kind of Riches.”

The nineteenth-century French mathematician Jean-Baptiste-
Joseph Fourier (1768-1830) had some knowledge of the subject of
linear programming, as evidenced by his work in linear inequalities
as early as 1826 (see §A.10 in the Appendix). He also suggested
the simplex method for solving linear programs arising from linear
approximation (see Chapter 8). In the late 1800s, the writings of
the French economist L. Walras (1834 1910) demonstrated his use of
linear programming. However, with a few other notable exceptions,
such as Kantorovich’s 1939 monograph Mathematical Méthods for
Organization and Planning of Production, there was comparatively
little attention paid to linear programming preceding World War I1.

The fortuitous synchronization of the advent of the computer
and George B. Dantzig’s reinvention of the simplex algorithm in
1947 contributed to the dizzyingly explosive development of linear
programming with applications to economics, business, industrial
engineering, actuarial sciences, operations research, and game the-
ory. Progress in linear programming is noteworthy enough to be
reported in the New York Times. In 1970 P. Samuelson (b. 1915)
was awarded the Nobel Prize in Economics, and in 1975 L. Kan-
torovich (1912-1986) and T. C. Koopmans (1910--1985) received the

1



2 Chapter 1 Introduction

Nobel Prize in Economics for their work in linear programming. The
subject of linear programming even made its way into Len Deighton’s
suspense spy story, The Billion Dollar Brain, published in 1966:

“I don’t want to bore you,” Harvey said, “but you should un-
derstand that these heaps of wire can practically think—Ilinear pro-
gramming—which means that instead of going through all alterna-
tives they have a hunch which is the right one.”

Optimization problems come in two flavors: maximization prob-
lems and minimization problems. In a maximization problem, we
want to maximize a function over a set, and in a minimization prob-
lem, we want to minimize a function over a set,

In both cases, the function is real valued and it is called the
objective function. The set is called the feasible region or the set of
feasible solutions. To solve an optimization (maximization or min-
imization) problem means usually to find both the optimal value
(maximal or minimal value, respectively) over the feasible region
and an optimal solution or optimizer [i.e., how (where) to reach the
optimal value, if it is possible]. It is not required unless otherwise
instructed to find all optimal solutions. This is different from solving
a system of linear equations, where a complete answer describes all
solutions.

The optimal value is also known as optimum or extremum.
Depending on the flavor, the terms mazimum (max for short) and
minimum (min for short) are also used. The set of all optimal
solutions (maximizers or minimizers) is called the optimality region.

Now we consider a simple example.

Imagine that you are asked to solve the following optimization
problem:,

Maximize z

{subject to 2<x<3.

Clearly the goal is to find the largest value for z, given that
this variable is limited as to the values it can assume. Since these
limitations are explicitly stated as functions of the variable under
consideration, called the objective variable, there is no difficulty in
solving the problem; just take the maximum value. Thus, you can
correctly conclude that the maximum value for z is 3, attained at
=3

However, it is more often the case that the range of values for

_the objective variable is given implicitly by placing limitations on



§1. What Is Linear Programming? 3

another variable or other variables related with the objective vari-
able. These variables are called decision or control variables. These
variables are under our control: We are free to decide their values
subject to given constraints. They are different from data that form
an input for our optimization problem. The objective function is
always a function of decision variables. Sometimes it has a name
called the objective variable.

For instance, in a problem such as finding which rectangles of
fixed perimeter encompass the largest area, the objective variable is
“area,” and the decision variables are [ = length of the rectangle and
w = width of the rectangle. In general, when the objective variable
is given as a function of decision variables, we use the term objective
function to describe the function we want to optimize. These limi-
tations on the decision variables, however they might be described,
are called the constraints or restraints of the problem.

Thus, a mathematical program is an optimization problem where
the objective function is a function of real variables (decision vari-
ables) and the feasible region is given by conditions (constraints)
on the variables. So a feasible solution is a set of values for all the
decision variables satisfying all the constraints in the problem. Math-
ematical programs are addressed in mathematical programming.

What is linear programming then? Linear programming is the.
part of mathematical programming that studies optimization (ex-
tremal) problems having objective functions and constraints of par-
ticularly simple form. Mathematically, a linear program is an opti-
mization problem of the following form: Maximize (or, sometimes,
minimize) an affine function subject to a finite set of linear con-
straints. Contrary to modern perception, the word programming
here does not refer to computer programming. In our context, which
goes back to military planning, programming means something like
“detailed planning.”

Now we define the terms affine function and linear constraint.
In this book, unless indicated otherwise, a number means a“real
number” and a function means a “real-valued function.”

Definition 1.1. A function f of variables x,, ..., z, is called a linear
form if it can be written as ¢;x; + - - - + ¢, Z,, where the coefficients
c; are given real numbers (constants). A function f is called affine
if it is the sum of a linear form and a constant. ]

Of course, it is not necessary to denote these variables as z;,
the coefficients as c¢;, or the function as f. For example, g(z,y) =
2z — a’y, where a is some fixed real number, is a linear form in two
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variables, which are denoted xr and y instead of x; and z,. Note
that if a were a variable and y were a fixed nonzero number, then
f(z,a) = 2z — a®y is not a linear form in z and a (see Problem 1.2).
Here are three affine functions of two variables, z,y : = — 4y = 3,
y+2,z+y. .
Problem 1.2. Show that the function g(z,a) = 2x — a®y, where y
is a fixed nonzero number, is not a linear form in z and a.
Solution. Suppose, to the contrary, that g(r,a) = 2z — a%y is a
linear form in z and q; that is, g(z,a) = 2z — a%y = ¢;z + cza with
coefficients ¢,, ¢; independent of z and a. Then g(1,0) = 2 = ¢
and g(0,1) = —y = c;. Thus, g(z,a) = 2z — a®y = 2z — ya, hence
a’y = ya for all a. Taking a = 2, we see that y = 0. But, since y
cannot equal zero by hypothesis, we have arrived at our hoped-for
contradiction. ]

The term linear function means “linear form” in some textbooks
and “affine function” in others. The term linear functional in linear
programming means “linear form.”

Linear constraints come in three flavors, of type =, >, or < .
The linear constraints of type = are familiar linear equations, that
is, the equalities of the form

an affine function = an affine function.
Most often, they come in the standard form
a linear form = a constant.

For illustration, z = 2, z —y = 0, 5y = 7 are three linear
equations for two variables z,y written in standard form, while 2 =
z,r =y, 3y+x+3 =1z - 2y — 4 are the same equations written
differently.

Two other types of linear constraints are inequalities of the form

an affine function (< or >) an affine function.
Often they are written as
a linear form (< or >) a constant.

Thus, a linear constraint consists of two affine functions (the
left-hand side and the right-hand side) connected by one of three
symbols: =, <, >. Strict linear inequalities such as z > 0 are not
considered to be linear constraints.

Example 1.3 ,
(i) y =sin5 is a linear constraint on the variable Y.

(i) z > 0 is a linear constraint on the variable z.
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(iii) 22 + 3y < 7 is a linear constraint on the variables z and y.
Note, however, that
(iv) y+sinz =1
is not a linear constraint on the variables x and y, since sinx is not
a linear form in z.

Definition 1.4. A linear program (LP for short), or linear program-

ming problem, is any optimization problem where we are required to

maximize (or minimize) an affine function subject to a finite set of

linear constraints. [ ]
For example, the following is a linear program:

minimize f(z1,...,Z,) =11 + - + CpTp + d,
n

subject to Zaﬁ z;<b; forj=1,...,m (1.5)
=1

z; 20 fori=1,...,n

where m,n are given natural numbers, d,c;,,b;,a;,; are constants,
and z; are decision (control) variables (unknowns). We call (1.5) a
linear program in canonical form.

The finite set of constraints in Definition 1.4 can be empty. In
other words, the number of constraints is allowed to be zero. If
there are no constraints in an optimization problem, we talk about
unconstrained optimization. Note that, unless otherwise instructed,
we cannot ignore any of the given constraints in an optimization
problem.

Recall that constant terms are not allowed in linear forms, but
we allow constant terms in the objective functions of linear programs.
Thus, according to our definitions, the function z — 2y + 3 of two
variables z and y is not a linear form but it is an affine function, and
it can be the objective function of a linear program. Some textbooks
make different choices in definitions.

It is possible to have an optimization problem or even a linear
program for which there are no feasible solutions (see Example 1.6).
Such a problem is called in feasible or inconsistent. It is also possible
for an optimization problem to have feasible solutions but no optimal
solutions. For example, maximize z subject to < 1. This explains
why we do not allow these kind of constraints in linear programming.

An optimization problem is called unbounded if the objective
function takes arbitrary large values in the case of the maximization
problem and arbitrary small values in the case of the minimization
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problem (Example 1.7). We will see in Chapter 4 that any feasible
linear program either has an optimal solution or is unbounded.

Note that there may be more than one optimal solution (or none
at all, as in Example 1.6) among the feasible solutions (Example 1.8).
However, the optimal (maximal or minimal) value of an optimization
problem is unique (if it exists). Had we found two different values,
one would be better, so the other would not be optimal.

Example 1.6. An Infeasible LP

Maximize 4z + by

subject to 2r+y <4
—2x-y< -5
z>0, y>0.

Note that if z and y satisfy the constraint 2z + y < 4, then, by
multiplying by —1, we obtain —~2z — y > —4. However, the second
constraint demands that —2z — y < —5. Obviously, the two given
constraints are mutually exclusive and therefore there are no feasible

solutions. This linear program is in feasible. [ ]
Example 1.7. An Unbounded LP
Maximize -2y
subject to —3z+ 2y < -2
~6z — 5y < -1
>0, y=>0.

This linear program does have feasible solutions (for example
z = 2/3, y = 0), but none of them is optimal. For any real number
M, there is a feasible solution x, y such that z—2y > M. An example
of such a feasible solution is = 2/3+ M and y = 0. In a sense, there
are so many feasible solutions that none of them even gets close to
being optimal. This linear program is unbounded. ]

Example 1.8 A LP with Many Optimal Solutions
Minimize T+y
subject to z,y,z > 0.

In this problem with three variables x, y, z the optimal solutions
are r = y = 0, z > 0 arbitrary nonnegative number. The optimal
value is 0. -

Example 1.9. A LP with One Optimal Solution

Minimize T+y+z
subject to z > -1,y > 2,z > 0.



§1. What Is Linear Programming? 7

In this linear program with three variables z,y, z the optimal
solution is z = —1,y = 2,z = 0. The optimal value is 1. Note that a
solution should contain values for all variables involved. »
Example 1.10. A Nonlinear Problem

Minimize 22 + 3% + 2*

{subject to |z| > 1,|yl < 3.

This is a mathematical program with three variables and two
constraints that is not linear because the objective function is not
affine and the constraints are not linear. (However, the second con-
straint can be replaced by two linear constraints, and the feasible
region is the disjoint union of two parts; each can be given by three
linear constraints.) Nevertheless, using common sense, it is clear
that the problem splits into three separate optimization problems
with one variable each. So there are exactly two optimal solutions,
r=2z1,y=-3,2 =0 and min = —26. (]

All numbers in linear programming are real numbers. In fact,
it is hard to imagine a linear program arising out of business and
industrial concerns, with numbers not being actually rational num-
bers. Why? You might ask yourself if the price of a product could
be stated as an irrational number, for example, /2. We will see later
that to solve a linear programming problem with rational data we
do not need irrational numbers. However, this is not the case with
nonlinear problems, as you can see when you solve the (nonlinear)
equation z2 = 2.

To develop your own appreciation of optimization problems, try
to solve the following two problems. Are they linear programs?

Problem 1.11
Maximize T

{subject to 2<x<3.
Solution. As we noted earlier, the maximal value is 3 (max = 3 for
short) and it is reached at z = 3. =

One of the main applications of the first derivative of a func-
tion, which you study in calculus, is to find the maxima or minima,
of a function by looking at the critical points. Yet you can see from
Problem 1.11 that first-year calculus is not sufficient to solve linear
programs. Suppose you are trying to find the maximum and min-
imum of the linear form f(r) = z on the interval 2 <z < 3by
determining where the first derivative equals zero. You observe that
the first derivative, 1, never equals zero. Yet the objective function
reaches its maximum, 3, and minimum, 2, on this interval.
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Problem 1.12
Maximize z +2y+z
subject to z+y=1,
z2>0.
Solution. The objective function takes arbitrarily large values as y
goes to +00, £ =1—y, z=0. Informally, we can write max = oo.
This is an unbounded linear program. =

Problems 1.11 and 1.12 are both linear programs because the
objective functions and all the constraints are linear. Note that the
optimal (maximal or minimal) value of an optimization problem is
unique. (Had we found two different values, one would be better, so
the other would not be optimal.) The optimal value always exists if
we add the symbols —o00, +00 to the set of real numbers as possible
values for the optimal value. But if it is reached at all, there could be
more than one way to reach it. That is, we may have many optimal
solutions for the same optimal value.

Now you have encountered the following terms: linear form,
affine function, linear constraint, linear program, objective function,
optimal value, optimal solution, feasible solution. Try to explain the
meaning of each of these terms.

Remark. We have already mentioned that linear programming is a
part of mathematical programming. In its turn, mathematical pro-
gramming is a tool in operations research (or operational research),
which is an application of scientific methods to the management
and administration of organized military, governmental, commer-
cial, and industrial processes. Historically, the terms programming
and operations came from planning military operations.

The terms systems engineering and management science mean
almost the same as operations research with less or more stress on the
human factor. As a part of operations research, linear programming
is concerned not only with solving of linear programs but also with

e acquiring and processing data required to make decisions

e problem formulation and model construction

e testing the models and interpreting solutions

e implementing solutions into decisions

e controlling the decisions

e organizing and interconnecting different aspects of the process

In this book we stress mathematical aspects of linear program-
ming, but we are also concerned with translating word problems into
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mathematical language, transforming linear programs into differents
forms, and making connections with game theory and statistics.
How is linear programming connected with linear algebra? The
main concern in linear algebra is solving systems of linear equations.
We will see in Chapter 5 that solving linear programs is equivalent
to finding feasible solutions for systems of linear constraints. Thus,
from a mathematical point of view, linear programming is about
more general and difficult problems.
Remark. Besides mathematical programming, there are other areas
of mathematics and computer science where optimization plays a
prominent role. For example, both control theory and calculus of
variations are concerned with optimization problems that cannot be
described easily with a finite set of variables. The feasible solutions
could be functions satisfying certain conditions. We may ask what is
the shortest curve connecting two given points in plane. Or we can
ask about the most efficient way to sort data of any size. Sometimes
mathematical programming can help to solve those problems.

Historic Remark. The mathematicians mentioned in this book
are well known, and their bios can be found in encyclopedias, bi-
ographies, history books, and on the Web.

Joseph Fourier, a French mathematician well known also as
an Egyptologist and administrator, is famous for his Fourier series,
which are very important in mathematical physics and engineering.
His work on linear approximation and linear programming is not so
well known. A son of a tailor, he had 11 siblings and 3 half-siblings.
His mother died when he was nine years old, and his father died the
following year. He received military and religious education and was
involved in politics. His life was in danger a few times.

Leonid Kantorovich, a Soviet mathematician with very impor-
tant contributions to economics, was almost unknown in the United
States until the simplex method was successfully implemented for
computers and widely used. He got his Ph.D. in mathematics at
age 18. The author had the pleasure of meeting Kantorovich sev-
eral times at mathematical talks and at business meetings involving
optimization of advanced planning in the former U.S.S.R. One of
many things he did in mathematics was introducing the notion of
a distance between probability distributions, which was rediscoved
later in different forms by other mathematicians, including the au-
thor (the Vaserstein distance). This distance is the optimal value for
a problem similar to the transportation problem (see Example 2.4
and Chapter 6).
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Exercises
1-13. State whether the following are true or false. Explain your
reasoning.
1. 1<2 2. —-10< -1
3. 3<3 4. -5/12> -3/7
5. z2+ |y| > 0 for all numbers z,y
6. 3z > z for all numbers
7. 323 > 222 for all numbers z

8. Every linear program should have at least one linear constraint
9. Every linear program has an optimal solution

10. Each variable in a linear program should be nonnegative

11. Any linear program has a unique optimal solution

12. The total number of constraints in a linear program is always
larger than the number of variables

13. The constraint 2z +5 = 6z — 3 is equivalent to a linear equation
for x a

14-17. Determine whether the following functions of x and y are
linear forms.

14. 2z 15. z+y+1

16. (sinl)z+e*y 17. zsina+yzm=
18-23. Is this a linear constraint for z?

18. z>2 19. Jz|<1

200 0=1 21. 0>1

22. y’=3 2. ar=b.m

24-26. Do you agree with the following statements? Why or why
not?

24. |z| < 1is equivalent to a system of two linear constraints
25. |z[ > 1 is equivalent to a system of two linear constraints
26. The equation (z — 1)2 = 0 is equivalent to a linear constraint
for x [

27. Solve the equation ax = b for z, where a and b are given num-
bers.
28-30. Solve the following three linear systems of equations for z
and y.
28.

r + 2y = 3

3 + 9y = 4



