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The 1972 International Symposium on Fault-Tolerant Computing is the second annual symposium to
be sponsored by the Technical Committee om Fault-Tolerant Computing of the IEEE Computer Society. This
year's symposium is held in cooperation with the C.S. Draper Laboratory of the Massachusetts Institute of
Technology, which has supported several members of the organizing committee.

I wish to cite the efforts of Prof. Gernot Metze, Dr. Lutz P. Henckels, and Messrs. Daniel Dolan
and Robert Millards who have all given their valuable enthusiastic, and long efforts to this symposium.
I wish also to thank all those who have helped in many ways, including the authors themselves for their
cooperation with the rcvi\ew and editorial activities, and the reviewers and program committee members
whose efforts were indispensible.

The papers in this volume are worthy successors to those in the highly successful 1971 Symposium.
They reflect the rapid progress and increasing interest in the field of Fault-Tolerant Computing which is
currently under way, and which promises to contimue to grow. The growth of the field is interdependent
with the dissemination and exchange of information among all of those interested in and participating inm
it. Inevitably, the dissemination process in symposia like this one tends to be selective. To those
whose efforts and interests are not 8o well represented in this volume as they might wish, I urge their
continued effort to make their contributions to future symposia in this series. Fault-tolerant computing
must advance on a broad front if it is to advance at all. One of the purposes of the sponsoring Technical
Committee is to stimulate advancement,; and for this we require the effective support of large numbers of
workers in the diverse areas of the field.

Albert L. Hopkine, Jr., Symposium Chairman

The program of the 1972 International Symposium on Fault-Tolerant Computing, the second symposium
in a series begun just last year, attgsts to the continued growth of interest in this new area. The Program
Committee has selected 38 papers that present state-of-the-art results in a wide range of topics in fault-
tolerance and has arranged them in six sessions. Various aspects of fault diagnosis, from practical
comparisons of the efficiency of different test generation methods to theoretical results on the diagmostic
capabilities of subsystems, again dominate the program and two sessions with eight papers each are scheduled.
There are also two related sessions on fault-tolerant logic design and system design, including software
systems, a session on applications of error protection codes and the design of check circuits, and a session

6



on models for reliability prediction in hardware and software and other models for fault-tolerant computing.
In addition, a panel of designers of fault-tolerant systems will present a retrospective analysis of the
relative merits of different schemes for achieving fault-tolerance.

The program packs a wealth of imformation into three days. We hope you will share our
enthusiasm and participate actively in the discussioms.

Gernot Metze, Technical Program Chairman

As Editor of the 1972 Conference Digest, I wish to express my appreciationm to
Albert Hopkims, Jr. for his advice and support and to Linda Barrom, my secretary, for her indispensable
help in preparing the Digest. I want to thank, im particular, the authors whose splended cooperatiom

made my task an easy and enjoyable one.

Lutz P. Henckels, Digest Editor



A RESIDUE CHECKER FOR ARITHMETIC AND LOGICAL OPERATIONS

P. Monteiro and T. R.
Department of Electrical Engineering
University of Maryland ) L
College Park, Maryland 20742

ABSTRACT

Until now the application of residue codes had
limited itself to arithmetic type operations such as
ADD, SHIFT, CYCLE, COMPLEMENT, etc. We
establish here that residue codes can be very effect-
ively used to check loéical operations (AND, OR,
EXOR) as well. The mathematical theory and logic
presented here, enables us to design a residue
checker organization to detect errors in all arithme-
tic and logical operations of a processor. Mathemati-
cal expressions characterizing *he operations of a
processor and checker are derived and are used to
obtain a hardware implementation schematic.

Index Terms: Residue checker, arithmetic and
logical operations, separate adder and checker,
residue codes, and self-checking processors.

INTRODUCTION

As the complexity of modern computers is increas-
ing, there is a growing need for efficient self detection
and correction of hardware faults in comput‘rs. The
conventional approach of duplication or triplication,
and matching or majority vote-taking of the outputs,
has given way to the relatively cheaper approach of
error detection through arithmetic codes. The theory
and implementation of these codes has received con-
siderable attention in recent years, but there remains
a gap between the theory and the development of
schemes which are easily and cheaply implementable.

A class of codes known as AN codes has been
studied in detail by Brown, Diamond [1][2]and others,
and Avizenis [3] has demonstrated a practical imple-
mentation of a 15N code for checking arithmetic
operations in a computer. The theory of other residue
codes has also been studied in great detail, and
various theorems establishing the error correcting
properties of such codes have been proved [4]75][6]
£7ice;.

For checking logical operations, various codes have
been studied M10]l11]. An estimate of the relative
cost of error checking through coding, as against
that using triplication has been arrived at M12]. How-
ever, hitherto error checking by means of residue
codes had restricted itself to checking arithmetic
operations only. It is our aim in the following para-
graphs, to arrive at a set of expressions for the
results of all the arithmetic, as well as logical
operations in.the processor, and then describe a
single unit which can be used to perform concurrent
diagnosis of the above mentioned operations.

It must be mentioned here that the circuitry for
addition and logical operatians can.also be checked by
two-rail logic [15] [16] where each Boolean variable
is represented by two lines, such that the true and
complemented logic functions are available at each
stage. All errors caused by a single failure are

N. Rao

detected by this method.

Description of processor unit to be checked

A block diagram of the unit to be checked is given
in Fig. 1. The accumulator A is an n-bit register
and holds the result at the end of every operation.
(Bp.-1s B,.2::--»Bg) represents the n-bit memory
operand, that is fed in through the n parallel input
data lines. In addition we have an n-bit parallel
adder, the shift rotate control logic, the circuitry !
used for performing logical operations on words of !
length n, and the OP-code decoder. [

Table 1 is a list of the operations that are performed
by the processor (which are all the operations that will
be checked).

GENERAL THEORY OF RESIDUE CHECKING

The residue code that will be used in the imple-
mentation of the checker, belongs to a class known as
separate codes. In a separate residue code, a numker
N is coded as a pair (N, C(N)). C(N) is the check
symbol for N. Addition of two code words (M}, C(Ny))
and(Np, C(N2)) yields the code word (N1+ NZ’ C(Ny) *
C(Nz)), where a suitable operation ! *' has to be
defined. Note that the addition of code words involves
the two operations of ' +' and' *' on the information
and check parts respectively. Also, if the equation
C(Nl)*C(Nz) = C(Nj+ Ny ) is satisfied, then the sum of
two code words yields another code word. A model
of a processor unit using a separate adder and checker
is shown in Fig. 2a. Peterson 5] has proven a
theorem of fundamental importance to schemes where
adder and checker are independent units.

Theorem 1. (Peterson). If there are fewer check
symbols than integers permissible in the range of N,
(of the model given in Fig. 2(a)) and if the check
symbols C(N) satisfy C(Nl)*C(Nz) = C(Nj+N,), then
C(N) must be the residue of N modulo some base b,
and * is addition modulo b of these check symbols.

Thus every separate code closed under addition is
of the form (N,IN[b), (INIb being defined as the least
non-negative integer congruent to N modulo b), for
some suitable b.

Peterson' s model can readily be generalized to
include all elementary arithmetic and arithmetic type
operations, such as SUB, SHIFT, CYCLE, etc. Fig.2b
is a model for the generalized separate processor and
checker. Further, if addition in the processor is
done modulo m, (where m = 21 or-2™-1 depending on
whether 2' s or 1's complement arithmetic is used,
and n is the number of bits of the operand register),
then we have the following result, first established by
Garner [4], and also used by Rao [8] in his error-
checking scheme for arithmetic operations.

Theorem 2. If N, and N, are elements of Z
(where Z _ denotes t]he ring of integers modulo m)



then the (N,lN\ ) code is closed under addition if and
only if b divides m.

Here b is called the check base. Thus if N represents
the integer value of the accumulator contents at any
instant, the residue [N| is obtained in a check register,
such that the contents l?the accumulator, together
with the contents of the check register form a code
word at the end of an operation cycle.

Let N, denote the integer value of the accumulator
contents at the beginning of an operation cycle. Let
N, denote the integer value of the input on the parallel
data lines from memory. An operation denoted by Qi
can be defined as a function of either N, NZ or both
and Np. Thus §. can be a unary or a binary function.
TLe integer value of the result of this operation is
denoted by R, such that (for a binary operation)
R =& (N), Np).
which is stored in the accumulator at the end of an
operation cycle.

Let Ny, denote the residue of N; modulo the check
base b. We assume that N}, is maintained in the check
register. Let N, denote the residue of N, modulo b.
Our aim is to find an operator $ ., such that
® (Njp, Ny ) = r, and r is the residue of R modulo b,
thus preserving the relation of congruence modulo b
between the contents of the accumulator and those of
the check register. In symbolic language. we wish to
preserve the relation|$ (Nl,N )|b (Nlb'NZb) If we
can find such a ¢ _ for every @ , error checking is
simply reduced to checking the relation of congruence
between the accumulator contents and the check reg-
ister contents periodically. Any violation of this
congruence can be set up as an error signal.

In the following discussion we consider the accumu-
lator to be of length n. In order to have simplified
checking logic, 1' s corhplement arithmetic will be
used (which is équivalent to considering all operations
modulo 2P-1), and b will be of the form 2K-1, where k
divides n.

The fault coverage at the gate level depends on the
scheme of addition and the loglc being used. The
discussion of error coverage is given in Section 5,
with particular reference to the coverage obtainable
with a mod 15 residue checker.

CHECKING ARITHMETIC OPERA TIONS

The checking of arithmetic operations has been
discussed in a previous paper[8]. For each operation
that is executed in the processor, there will be a
parallel operation in the checker, such that at the end
of the operation cycle, the checker maintains a residue
of the accumulator contents modulo b (assuming
there has been no error in the computation).

The first part of Table 2 is a listing of the formulas
for the results of various processor arithmetic and
arithmetic type operations, and their corresponding *
checker operations.  These can be easily derived
along the lines of the derivation given below for a
sample arithmetic type operation.

Consider the SHR operation, which shifts the con-
tents of the accumulator to the right once. Let A(t)
denote the n-bit binary array represented by the con-

Thus R is the integer value of the output,

tents of the accumulator at instant t. Let A. (t) denote
the binary digit stored in the i+ 1th pit (from right to
left) of the accumulator at time t. Let GI(A(tH denote
the integer value of the accumulator at time t, such
that 5I(A(t)) =N Assume each operation takes one
unit of time. Let the operator § denote the SHR
operation, and let R denote the integer value of the

. result of the operation, which is stored in the accumu-

lator at the end of the operation.
We have,
R = BI(A(t+ 1)) = Q(NI,NZ)

At+1)= (A (t+1), A _(t+1)..... A (t+1))
n-1 n-2 0
where
A__ ()= 0
A+ = A6 for §=0,1...... n-2
n-1 |
= 5(A(t+1) = A t+1) - 2]
; i=0
n-2 n-2
RS o #+1
'X T X Ay i) 2 2
i=0 i=0
Letj=i+1
-
n-1 )
- . o) -
= 1/252 A 2+ 172 AG0) - 1/2 Ag(0)
j=1
n-1
=1/2)) A 2 - 1/2 M) = (N - Ag(t) /2
j=0

Therefore the result r of the checker is given by

r = 1/2(N-A(t)) | F|1/2(N) - A )]
Similarly formulas are derived for all other
arithmetic and arithmetic type operations listed in

Table 1.

We can see that except for corrections in the form
of the least and most significant digits from the
accumulator during the SHR and SHL operations, the
checker operates independently of the processor in a
parallel fashion. Thus the checker unit will have a
k-bit check register, a k-bit parallel adder, a decoder,
and appropriate gating as shown in Fig. 3.

CHECKING LOGICAL OPERATIONS

In trying to use a residue code for checking 'logical
operations, we immediately run into a problem. The
residue code is closed under operations like ADD,

SUB, CYCLE etc., but is not closed under bitwise
logical operations such as AND, OR and exclusive -
OR. However by use of a simple relation between
arithmetic and logical operations, stated in the theorem
below, we can make use of the same unit for checking
both-arithmetic as well as logical operations.



Notation: Let A(t) and B(t) each represent binary
arrays of length n.

Let GI(A(t)) = N(t).
8,(B(t)) = N, (t)
Let'.', 'V' and'®' denote the bit-by-bit AND, OR

and exclusive-OR operations on arrays A(t) and B(t).
Theorem 3:

6 (A(t) + 8,(B(t)) = 5, (A(t) B(t)) + 6, (A(t) V B(t))

Also
GI(A(t) ® B(t)) = GI(A(t)) + 61(B(t)) N ZKI(A(t)' B(t))
The theorem can easily be proved by showing that the

relation is true for a single bit i of the two arrays,
and then summing up from i = 0 to i = n-1.

As an immediate consequence of the above we have

Corollarx
l6,(a(t) v B@t)), = INy, ()1 N, (E)-18,(A(t)- B(t))lblb

IGI(A BBt = N, )+ N, (£)- 2|5 (A (t)- B(t)) 1

The formulas for the result of logical operations are
given in the second half of Table 2.

HARDWARE IMPLEMENTA TION

From the various formulas listed in Table 2 we
can obtain sequences of microoperations that make up
each arithmetic and logical operation.

Fr om the results of the previous section we see
that the logical operations considered can be expressed
in terms of the ADD, AND, SUB and CYCLE LEFT
(CYL) operations. The OR operation reduces to ADD
and AND operations followed by SUB. The EXOR
operation reduceg to ADD and AND followed by CYL
and SUB. Thus checking of logical operations by
means of a residue code requires additional circuitry .
in the checker, consisting of just n two-input AND
gates, as the circuitry for performing ADD, SUB and
CYL operations is already available in the checker.

We can derive the Boolean equations corresponding
to each sequence of microoperations for the checker,
and these can then be translated into a hardware
design. Design Studies have been carried out on a
mod 15 residue checker for a 16 bit monolithic parallel
processor [14]. The processor circuitry consists of
about 800 gates. The checker circuitry consists of
about 400 gates. The hardware increase is only of the
order of 50%. Moreover the checker does not slow
down processor operation. Error detection can be
carried out during each instruction interpretation
cycle, while the next operation is being decoded.
block diagram of the checker is given in Fjg. 3.

A

Error Coverage

Although detailed studies on the exact error cover-
age obtainable by this scheme are not yet completed,

some general comments are in order. The mod 15
residue check detects all failures for which the error
is not a multiple of 15. All the gates that affect one,
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two or three successive bits of the accumulator are
covered, ag|+2]|)|+3.2], [+5.2] 5 and [+7.2)]
are all non zero. All bursts of length™3 or less, and
most bursts of length 4 or greater are detected.

The coverage at the gate level for addition circuitry
depends on the scheme of addition being used. In the
example being considered, the 16 bit operand in the
ALU is divided into bytes of four bits each. Thus
there will be four groups of digits. During addition of
two words, carries are rippled through each group
of four bits, but there is a separate fast carry structure
look-ahead logic for propagation of the carry between
one group and the next. Langdon and Tang [13] have
shown, that when such is the case, a failure in a
single carry line may cause a burst, such that the error
value is not necessarily 2! for some i(0 <i < 15). This
is because the carries do not propagate up to the
position expected if they were allowed to ripple all the
way through. The faulty carry may affect the sum
bits in the particular group within which it is generated,
but the carry into the succeeding group is independently
and correctly generated, and hence the sum bits of the
next group are correct. For a detailed discussion on
the type of errors caused by individual gate failures
in carry look-ahead adders, the reader is referred to
the paper by Langdon and Tang MN3].

CONCLUSION

The main effort in this paper, is directed towards
showing how a single checker unit utilizing a residue
code can be used for checking both, logical, as well
as arithmetic operations in a digital computer. The
cost of checking has been found to be about 509 of the
cost of the processor, which is far below the cost
involved in duplication and matching.

Using a mod 15 residue code as an example, we
have shown that apart from single errors, all bursts
of length 3 or less and most bursts of length 4 are
detected .with this code. Thus, the mod 15 checker
covers a large percentage of errors that may occur
due to faults in the ALU.

Future research in this area will concentrate on
studies on syndrome generation and error correction
using bi-residue codes. The theory of error correct-
ion for both, logical as well as arithmetic operations
will be considered.
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TABLE 2: Characterization of Arithmetic and Logical Operations
of a Processor
Operation Result R = ¢i(N1. NZ) Operation Q= ¢ci(Nlb" NZb)
.21 m=2"-1 bei b=2k.)
A, ARITHMETIC OPERATIONS
¢,(ADD) 1Ny +N, [y el Ny, +Npy, [,
by BUB) ING - N, [y $e2 N, = Nop
$5{SM) IN, - Nyl $e3 Ny, - Nl
¢4(COMP) |- N[ $eq =Ny Iy
¢ (SHL) |2N1 - An_l(t)lm .5 |zNlb - An_l(t)|b
¢4 (SHR) | 1/2(Nj-A  (t)) |m e II/Z(Nlb-AO(t)) ly,
¢,(CYR) | 1/2N1| " o7 |1/2 Nlb‘b
hgt=T L) ER T 8 12Ny, 1y,
6g(CLA) N, %9 Nob
iy l] . $c10 o
¢H(SET) 0 ¢cli 0
B. LOGICAL OPERA TIONS
A
¢,,(AND) [ 6,(A(t) - B(t))| de12 ls(at) - BN,
$,3(OR) L8 (a) v B@®)I be13 IN, + N, -] (A() -
B(t))lb Ib
;4 (EXOR) | 6 (A() @ B(t)) | . b4 INlb N, - 28 A

B(t) [, 1,

12



Input Operand B B(t) (16 bits)

=(Bn_1, W BO_)
16 A(t)(16 bits)
l Circ:'ui ry for Residue bits || | ‘
Adder 'T Logical Opera- Generator AND Logic
' tions
(]
\ | 4 bits :
't—-_-“—"_: C binat 1 ‘[
.o 5 ,_,w : , ~> ;;‘rgc;{naBona Combinatoria
: _— — | | —| D |} ! Block A
Op N N Accumulator o & ksl "—r___l -
: € M i 3 “--——-——H=-c—-HKH---—-=-
Code ¢ - . 2 : (Ap_1s:-- Ao) Op. g : 4 bits
' a |-l Code . X Adder
e . : ¢C —> — :
. D < | _ | shift Rotate ! !
Control Logic L ,/Combinatoria
Block C
4 bits
Fi 1: Arith . % N Check Muteh
ig. 1: rithmetic and Logical Unit to be Checked. i Register Ci:cixit
1 bit
Control Signal
+ f——> N.+N L
. Rt 12 , .
2 g Error Indicator
[PUSEEESES—— S | . . A .
C(Nl) 5 | Fig. 3: Block Diagram for Checker
ciN,) T G, JHOTr + T

Fig. 2(a): Peterson's Model for Separate Adder and

Checker.
NZ N Processor
b, — Nl —‘T .
i RN N)
:___ Error
--»ldetectof >
f Error
N Checker : signal
2b |
N .
oy — 1b : i
r = oy Ny Nay!

Fig. 2(b): Generalized Model for Separate Processor
and Checker.

13



LOOK~ASIDE TECHNIQUES FOR MINIMUM CIRCUIT MEMORY TRANSLATORS

W. C.
K. A.

ABSTRACT

This paper will demonstrate two improvements
in coding techniques that could be used for memory
word coding. First, within the fixed structure of
a Hamming' SEC/DED code, an improvement can be
obtained in circuit cost and operational speed over
more conventional code implementations. Second,
the mechanics of error correction in a fault
tolerant computer may be carried out via conven-
tional hardware means or by use of the existing
‘system facilities such as the combination of the
microprogram unit, local store, and the arithmetic-
logic unit. These improvements may be obtained by
the use of Rotational Coding schemes in conjunction
with a technique called "Look-aside Correction".
This paper will first show a generalized algorithm
for specifying the parity check matrix of Rotational
Codes. The structure implemented by the parity
check matrix in this paper will be not merely
encoding and decoding circuitry, but will translate
between rotational code forms and byte-parity
encoded forms. The unique feature of these
translators is that use of the Rotational Code
permits the error correction to be performed on only
a subset of the data word bits, and only if a single
error condition has been detected. The correction
mechanism may be either a hardware logic circuit
of firmware. The paper concludes with a comparison
of the circuit requirements. and correctional speed
of the Hamming (72,64) Single-Error-Correcting,
Double-Error-Detecting Code, as it would normally
be implemented, and a Rotational Code Translator
also operating on 64 data bits and eight check bits.
The latter translator is seen to provide cheaper
implementation with faster average speed of error
correction,

1. INTRODUCTION

1.1. The Use of Codes in a Fault-Tolerant

Comput ing System

Computing system designers have utilized
a variety of coding techniques to enhance the
failure toleration capacity of the system,
but normally at a significant increment to
system cost. Moreoever, the coding circuitry
used for reliability improvement can constitute
a significant number of logic gates and even
become a 1iability to its own objective "if
it is designed in an indiscriminate fashion.
A recent paper [1] presented design techniques
to be used for implementing memory word coding

* IBM - Systems Development Division
South Road
Poughkeepsie, New York 12601

Carter
Duke*
D. C. Jessep, Jr.
IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

so that the logic circuitry used for both
encoding and decoding can be designed to
alert the system CPU when it suffers a logic
gate failure itself. This function is performed
in addition to the normal memory word error
correction and detection functions performed
by the circuitry. The extra cost in logic
gates of this self-testability property is
less than 7.5% of the total cost of coding
circuitry for a 32 bit word and approaches
1.02 for larger memory words.

An alternate vehicle to coding alone
for achieving fault tolerance is that of
replacing faulty units by spares. Recent
work [2], however, has shown that limiting
conditions exist, in a system using only
sparing, beyond which no reliability improvements
is afforded by the inclusion of additional
spares beyond a specifiable maximum allotment.
Moreoever, coding in conjunction with sparing
can be shown [2,3] to be more efficient than
sparing alone. In any such case, the coding
must be implemented in an efficient manner
s0 as not .to detract heavily from normal
system operation.

1.2. A Theory of Design of Coding Circuitry

This paper will demonstrate two distinct
improvements in the application of a particular
coding technique as it would be used for
memory word coding. First, even within

. a rather fixed structure of the chosen code,
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as 1t is specified by the matrix descriptors
of coding theory, a dramatic improvement

can be obtained in circuit cost and operational
speed over more conventional code implementations.
"Look-aside" correction, as explained in

this paper, provides the basis for these
improvements. Second, the mechanics of

error correction in an ultra-reliable computer
may be carried out via conventional hardware
means or by use of the existing system facilities
such as the combination of the microprogram
unit, local store, and the arithmetic-logic
unit. This, again, 18 a choice to be made

by the designer. 1In either case, correction

in a "Look-aside" mode need only be performed
when necessary, not as an inherent part of

the memory Read-out process. Hence, the
primary purpose of this paper will be to
demonstrate how minimum implementation cost

and minimum delay coding circuitry can be
prescribed for a particular class of codes.



2. THE PARTICULAR CODE UNDER CONSIDERATION

To properly preface the discussion
of the code, it is necessary to delineate
carefully some assumptions and terminology
to be used in this discussion. The coding
circuitry used will actually not merely encode
or decode the memory word; the word read
out of store will be transformed from its
memory coded form into a byte-parity encoded
form. The word to be stored will be removed
from the bus in a byte-parity encoded form .
and transformed into an encoded form for
storage. Hence, the coding circuitry performing
the encoding and decoding is actually translating
from one coded form to another, depending
on whether data is being placed on, or removed
from the bus. Thus, the coding circuitry
will be referred to as a translator.

It will be assumed in this paper
that the reader is familiar with the concept
of the Parity Check Matrix (PCM) and the
use of the parity relations between data bits
and check bits prescribed by the rows of the
PCM to form syndromes; this approach has already
received ample treatment in the literature [4].
If the word to be encoded according to the PCM
is composed of m bytes of b bits per byte, there
are k = mb total data bits. Given k, the normal
Hamming relationship [4] determines the number
of check bits, r. The PCM will then have n
=k + r columns and r rows (and syndromes).

2.1. The Rotational Code

In terms of the PCM just discussed
it is now possible to define a class of codes,
the Rotational Codes, which will serve as a focal
point of this paper. The Rotatiomal Codes
are so named because of the appearance of the
PM. The PCM for the Rotational Codes is formed
according to the following rules which apply
to the case m = r, Modifications for m # r will
be discussed later.

(1) For the r check bit columns of the

PCM, choose the r combinations of one 1 and

(r - %2 0‘%hso that tgg r colggns have a 1 in
the 1", r , (x -1) ",...,2" rows only, with
0's elsewhere in these columns.

(2) Starting with the columns of the PCM
corresponding to only the first byte (the first
b columns), assign the entire first row of these
columns to be 1's. ‘

(3) For the same b columns of the PCM

in step (2), assign each column using the
list in Table 1. First, pick b columns

or as many columns as possible with three 1's
and with min r < b. 1If there are less than
b such columns, repeat the process for five
1's, then for seven 1's, nine 1's, eleven
1's, until b columns have been selected. Table
2 shows the maximum number of columns with
three, five, seven or nine 1's which may be
chosen for r bytes for r = 4,...,11.

(4) The PCM columns for the succeeding

bytes are obtained from the columns formulated
for the first byte by vertical rotational of
the PQM rows corresponding to byte 1. The
row of b 1's, formulated in step (2) as the
first row of the PCM columns corresponding to
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byte 1, now becomes the rth row for the columns
corresponding to byte 2, the (r—l)st row for

the columns corresponding to byte 3. Thus,
theé{ow of bl's w%kl be the [1 + ((r + 1 - j)mod
r)]° " row of the j  byte, j = 1,2,...,r. Each
row is then seen to rotate Vergﬁcally one row

as first the columns for the j byte are observed

and then those of the j + 18t byte.

(5) At the completion of the construction

of the PCM, there should be mb4r columns, each
with an odd number of 1's in it. Each b column-
wide section of the first mb columns will be

a vertical rotation away from the sections
immediately adjacent to it. Each of the final r
columns will contain only a single 1 and each of
these columns will be a vertical rotation away from
the columns immediately adjacent to it in this
checkbit portion of the PM.

There are two considerations paramount
to this technique of specifying the PCM: first,
variations in the algorithm for relative sizes
of m, b and r, and second, the construction
of a PM in which all columns are distinct (no
two are identical. To generalize &he above
algorithm for PCM construction, the following
steps must be taken.

Divide the m bytes evenly, if possible,
into r sets, Ti' Ifm=dr +e, 0<ec<r,

put d + 1 bytes into the first e sets, T,,
TZ""’Te' ((d+1)b < max b in Table 2) and

d bytes into the last (r-e) sets, Te , Te+2""’
Tr' Let set Ti correspond to the i~ check
bit and the i'" row. Begin by putting b(d+l)
1's into the first row under T., b(d+l) 1's
into the second row under T,, %nd continue
for the firsE e sets. Now put bd 1's into
the (e + 1)s row under the set T 1’ and
continue until under each set thefe are b(d
+ 1) or bd 1's, each in a separate row. As

‘before, the columns are constructed by the

use of Table 1 beginning with three 1's in
a column, then sucessively, the columns

can be filled with five 1's, seven 1's,
etc., until all data bit columns of the PCM
are assigned a 1-0 pattern.

For the case of m < r, it may be
necessary to rotate the rows more than one
position at a time. It will not generally
be possiblc, in such a case, to perform r
total steps of rotation. If m > r, it may be
necessary to subdivide one or more bytes
of the PCM to obtain a step-wise rotation
for each row.

No matter what the relationship of
m and b, a minimum number of 1's is used.
Use of a minimal number of 1's (starting
with three, then five, seven and so on) is
advantageous because the fewer 1's there
are in the PCM, the fewer the interconnections
and the fewer Exclusive-OR (XOR) circuits
used. It is best to choose the 1's such
that the number in each row is balanced so
the circuit delays are approximately equal.

The final result of these steps is
a PCM in which all columns are distinct and
in which as few a number of 1's as possible
appears, for minimal circuit or delay

. .__________.i‘ "";



implementation. The next step is to consider

how this PCM can be used to provide the encoding
and decoding operations necessary and to
demonstrate the possibilities for error correction
by use of either normal hardware correctors

or the microprogram unit and the arithmetic

unit.

2.2. Decoding and Encoding with a Rotational Code

The general structure of the PCM formulated
for the rotational class of codes in the previous
section will have characteristics of importance
to coding. The PCM contains a minimum number
of 1's for a Hamming Single Error Correcting -
Double Error Detecting (SEC/DED) code [5]. Every
set of columns corresponding to one byte of data
will have one solid row of 1's appearing in 1it.
Additionally, this same row will have other
1's corresponding only to data bits 1's appearing
in it. This latter set of 1's will be referred
to as the Parity Subset. In conventional. coding
schemes, the parity gﬁ all data bits which corres-
pond to a 1 in the 1
directly to form the syndrome S,. In rotational
coding schemes, the syndrome is formed in such
a fashion as to permit formation of byte parity
as an intermediate step in the process, thus
facilitating bus transmission. Define the
following variables:

Yy -'the parity over the 1! row Parity Subset

X, - the parity over the 1th byte
Py - the parity bit to maintain odd

parity across the 1th byte.

The distinction is made here on the
parity of a byte (x,) and the parity bit for
the same byte (p,). If the parity for a byte
is even, the parity bit will be a 1 if odd
parity is required for error detection.

Consider odd parity to be used with th
a rotational code PCM. Then, for the i
row of the PCM, we have the parity equations:

X, @y &c, =1
and i i i

Xy ® P; = 1
where " @ " denotes Phe XOR operation and
ey is the check bit which corresponds to

a 1 entry in the ith row.
two by an XOR,

Combining the

(1) ®c,.

Py "% 7 %
The implication of tgﬁs equation is that the
parity bit for the i data byte can now

be generated as the parity of the ith row

Parity Subset and the check bit, ¢, (and

does nottgave to include the gﬁtuai bits

of the i data byte). The i date byte,

with parity x, and parity bit p,, are put into
the MDR. Each byte of the MDR is parity checked
to ensure data integrity before use after a READ
or before encoding after a WRITE beg%gs. Now,
for the rotational code, then, the i syndrome,
Si’ is formed from the expression

Si = x @ Py which checks the MDR.

Slight deviations in this are required

row of the PCM is determined

<4
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if m # r because of the way the P(M was formed.
If m # r, the parity and syndrome bits are
formed as for m = r for syndromes corresponding
to PCM rows in which a full byte-wide row of 1's
is found. Otherwise, parity and syndrome bits
are formed from the XOR of only the bits having
1's in the corresponding row of the PCM.

Si =1,1=1,2,...,r, for no error
in the 1th byte. The no error signal, NE,

then is formed from NE = A S, and is 1 for
i=1

an error free word. If NE = 0, it becomes
necessary to determine if it is a single or double
error. Anytime a single data error exists,
an odd number of syndromes change. If one,
and only one, syndrome changes, the error is
in a check bit [1,5]. This classification
ability derives from the code property that
each column has an odd number of 1's in it,
with columns having single 1's in them reserved
for check bit columns. Thus, a single error
has been detected if NE = 0 and if the parity
across the syndromes changes. Hence, the single
error signal is SE = NE A (Si #5S,8 ... +5)

: r
for r_even and
SE = NE (Si @ S2 ® ... & Sr)'

for r odd. If there is an error signal (NE = 0)
and it is not a single error (SE = 0), then it is
a double error (DE) and DE = NEA SE = 1,

The basic steps of the Memory Read
process, then, are given as follows:

1. Formulate a parity bit for each byte
by use of the PCM and Equation (1).

2, Form the syndromes from the parity
check on the byte parity and its parity bit
(formed in 1) for each data byte.

3. Determine if an error condition exists
in the data read out. If the data contains
no errors, gate the word out to the CPU;
otherwise, correct any single error or notify
the CPU of any double errors.

The Memory Write process consists
of accepting a set of parity encoded data
bytes from the bus, checking the parity for
each byte, re-encoding the data bits according
to the PCM, and gating away the newly re-
encoded word into the memory. Once the
byte parity of the incoming word has been
checked, the check bits for the newly re-
encoded form can be generated using the circuitry
provided to implement the PCM function for
the Read process., Rearrangement of the
basic equation, ¢y ® ¥y = Pys for the ‘Read

process gives Py ® y;=¢ for the Write

i

process. Hence the parity bit for each byte
and the Parity Subset denoted by y, in the
equation above, are XOR'ed together to provide
the check bits required by the data bits

in each byte prior to storage. Once the check
bits are generated, the word (data and check
bits) can be stored. It is. thus important

to note that this translator literally makes
use of the same logic circuitry to both decode
and encode and the MDR parity check circuitry
is used to check and form a syndrome. The
hardware implementation of one such system




