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Preface

The material presented in this book is based on lecture courses de-
livered by myself to engineering and science students over a period of
years. It is hoped that the material presented will provide the reader
with a good introductory knowledge of the techniques of analytic and
numerical solution of ordinary differential equations. Any student
wishing to pursue any part of the subject in further depth can refer to
books listed in the short bibliography at the end of this book. Most of
the illustrative examples have physical applications and are drawn from
various fields. The problems which are given for solution by the student
are however given in mathematical form, so that they are of general
application rather than being restricted to any one branch of engineer-
ing or science. Many problems are given, and answers to all are listed
at the end of the book.

In this book when, for example, integrals need to be evaluated
reference is made to particular formulae in Barnett and Cronin (1975).

I should like to thank Dr S. Barnett for his many helpful sugges-
tions during the preparation of the manuscript, and for invaluable help
in correcting the proofs. Also to Dr J. A. Grant and Mr G. Eccles for
their helpful suggestions, to Mrs M. B. Balmforth, Mrs J. Foster and
Miss V. M. Morton for typing the manuscript, to Mrs J. Braithwaite and
Mr S. Teal for preparing the drawings, and the University of Bradford
for permission to make use of examples from University examination
papers in preparing the examples and problems of this book.

L. B. Jones
September, 1975
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CHAPTER ONE

Introductory ldeas

1.1 Introduction

A differential equation is an equation that involves derivatives. The
following are examples of differential equations:

dy

= = j
I % (1.1)
2

g;{- +y =sinx (1.2)
2 g k2

%;%Jr (d—Jt’) iy =0 (1.3)
%y _ 1 3%y

ax? ¢ o (14
Equations (1.1)-(1.3) involve only ordinary derivatives, and they are
called ordinary differential equations. Equation (1.4) involves partial
derivatives and so is called a partial differential equation.

As the title of the book states, we will be concerned only with
ordinary differential equations. Throughout this book, derivatives will
be denoted in various ways. If y is a function of x, and assuming that
the function is differentiable to whatever order is required, then the
first derivative will be denoted by any of the following forms:
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the second derivative by

&y o

dx2 b bl
and the nth derivative by
d*y
5, () ‘

Equation (1.3) can therefore be expressed in the following alternative
forms:

y'+ (@) +siny =0
yB + [p(D]2 +siny =0

Given a differential equation involving y, x and the derivatives
d”y/dx", we wish to determine the resulting dependence of y on x.
That is, we wish to find a relationship between y and x, say of the
form y = f(x), such that the relationship satisfies the differential
equation. Such a relationship is called a solution of the differential
equation.

For example, by straightforward differentiation it is easily seen
that

y=4x2,y=4x? —1,y=4x2+2
are all solutions to the differential equation (1.1), while
y=x,y=§x2, y=4x3+1
are not solutions.

Solutions to differential equations must often satisfy certain addi-
tional conditions. For example, the path of a projectile may be required
subject to its passing through a given point in space with a given velocity
at that point; or the deflection of a beam under load may be required
subject to its being clamped at two or more places. If all the condi-
tions are prescribed at a given point, as for the projectile, they are
called initial conditions. If they are prescribed at different points, as
for the beam, they are called boundary conditions.

Solutions may be obtained in closed form involving known functions,
when they are called analytic solutions, or they may be obtained as

approximate solutions which are for practical purposes close enough to
the exact analytic solution over a specified range of values; or they may
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be obtained as numerical solutions, usually using a computer. In some
cases, however, it may be sufficient to determine only the main charac-
teristics of the solution, rather than the solution itself.

Example 1.1 Consider the differential equation
%=§(1 —x?) subject to x=0whent=0 (1.5)

x can be taken as the displacement of a particle and ¢ as time.

(a) The analytic solution, which will be obtained in Problem 2.2(a), is

el — 1

o (1.6)
This can be checked by direct substitution into the differential
equation, and can also be seen to satisfy the given condition.

(b) An approximate solution valid for small values of time is

x=3t—-&Kp
which is obtained by solution in series as described in Chapter 6.
Terms involving " where n = 5 have been neglected, and this gives
a measure of the accuracy of the approximation.

(¢) Using a fourth-order Runge-Kutta method, as described in Section

3.3.2, the solution is

t 0 01 0-2 0-3

x 0 00500 0:0997 0-1489
where the values of x as given by this numerical method are accurate
to about £1074.

(d) The main characteristics of the motion given by (1.5) can be ob-
tained by noting that when dx/dt > 0, x increases as ¢ increases,
and that when dx/dz < 0, x decreases when ¢ increases. Hence for
the differential equation (1.5), x increases with time when
—1 < x <1 and x decreases with time when x > 1 and x < —1.
When x = =1 the velocity of the particle is zero so that the points
x = %1 are equilibrium points, that is points at which the particle
can remain at rest for all values of time. This information is illus-
trated in Fig. 1.1, the arrows denoting the motion as time increases,
starting at various initial points. It will be noted that x = 1 is a
stable point in that any particle on either side of x = 1 approaches
x =1, while x = —1 is an unstable point.

x(t) =
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Fig. 1.1

Returrling to the given condition x = 0 when ¢ = 0, we see from
Fig. 1.1 that x will increase with time and eventually approach
x = 1. This is confirmed by the analytic solution, since from (1.6)
lim x(#)=1" and 0<x()<l1, t=0
t— oo
It will be shown in the next section how differential equations arise,
and that in most physical situations the differential equation which
models a situation is based on a number of approximating assumptions.
Accurate solutions of the differential equations are needed when the
question of the validity of the model arises, since any discrepancy
between the theoretical and experimental results needs to be attributed
to the model and not to its solution. When the model is known to be
a good representation of the physical situation, then the scientist or
engineer may from practical considerations only require the solution
to be accurate within prescribed limits. If an analytic solution cannot
be found, then any numerical or approximate solutions need to have
an accuracy within those prescribed limits. It is therefore necessary
in any numerical or approximate solution to be able to quote the
order of the error.

1.2 Formulation of differential equations

Differential equations arise in many ways, but we shall mainly be
interested in those that result from the mathematical representation
of physical situations.

Let us consider in a little detail the mathematical representation
of the path of a projectile. The horizontal and vertical axes are de-
noted by x and y respectively (Fig. 1.2). The projectile P has mass
m and is projected with speed V at an angle « to the horizontal.

The only force acting on the projectile is the constant force of
gravity, mg, acting in a vertical (downward) direction. Velocity is
the rate of change of distance travelled, so that the components of
the velocity of the projectile in the x and y directions are dx/d¢ and
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iy

Fig. 1.2

dy/dt respectively. Similarly the components of the acceleration in
the x and y directions are d2x/dt? and d*y/dt* respectively.

The differential equations representing the path of the projectile
are now obtained by using Newton’s law of motion, which states
that force equals mass multiplied by acceleration.

Hence in the x direction,

d%x
m L =0 (1.7)
and in the y direction
d2

The above pair of differential equations together with the initial
conditions
x=y=0
t=0
dx/dt =V cos o dy/dt =V sin «
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provide a mathematical model of the motion. The solution of the
differential equations with the initial conditions results in a relation
between y and x which is the equation for the path of the projectile.
This equation is obtained later in Problem 4.9, and is the equation of
a parabola, as is well known. This parabolic path is the exact solution
of the differential equations, but we now question whether this path
coincides with or approximates closely the actual path of the pro-
jectile. In other words, is the mathematical model an accurate enough
representation of the actual physical situation? We look at some of the
assumptions or approximations that have been made to obtain our
mathematical model.

(a) We have assumed that the gravitational force is constant. In fact
the force is a function of its position above the earth. Taking the
earth to be of constant density of radius R, then the gravitational
acceleration g at height # above the earth is more closely given
by

_ _8R?

E"+R)?
where g, is the gravitational acceleration at the earth’s surface.
When # < R, the value of g can be approximated by g, so that
when we are concerned with the trajectory of a bullet, golf ball
or even flight of an aircraft, the gravitational force can be approxi-
mated by a constant value. When we are dealing with the motion
of a satellite, the gravitational force has to be taken as obeying an
inverse square law, as above. Assuming that the gravitational
force due to other bodies such as the sun is small compared with
that of the earth, the motion is an orbit with the centre of the
earth as focus. Strictly, even when dealing with motion near the
earth’s surface the path is an orbit with the earth’s centre as
focus, but this orbit over the small range of distances involved is
very closely approximated by the parabolic path obtained on
taking a constant gravitational force.

(b) We have assumed that the only force acting on the projectile is
that due to gravitation. It is very likely, however, that other
forces act on the projectile and that they are not negligible in
comparison with the gravitational force. For instance, if we con-
sider motion through air, there is a force resisting motion due to
friction between the air and the projectile, and there might be
other forces depending upon the shape of the projectile: for
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example, wings are designed to provide a lifting force (force in
the vertical direction). These forces for a particular projectile
have to be obtained from aerodynamic theory.

We now consider the case in which the resultant of the forces,
other than gravitational, acting on the projectile opposes its motion
and is proportional to its velocity (Fig. 1.3). Let v be the speed of the
projectile and 0 be the angle that the tangent to the path makes with
the horizontal.

kv
mg

> X

Fig. 1.3

The component of force in the x direction is —kv cos 0, and in the
y direction is —kv sin 6. But v cos 0 is the component of the velocity
in the direction of the x axis, and hence v cos § = dx/d¢, and similarly
v sin 6 =dy/dt.
The differential equations giving the motion are now
d?x_ . dx
a5y (1.8)
2
m 42y _ k dy

a2~ Far ™8
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with the same initial conditions as taken previously. Equations (1.8)
are the model needed when the forces are as stated. However, the air
forces acting on the projectile need not lie in the x,y plane, and if
they do not, the path of the projectile is not two dimensional. A set
of three differential equations is needed to represent the projectile
path. An example of this is well known to all golfers when a certain
spin imparted to a golf ball results in a slice or hook shot.

We see from the above discussion that our original set of differential
equations is an adequate approximation to the physical situation, pro-
vided that the projectile stays close to the earth’s surface and that air
or other forces are of very small magnitude in comparison to the gravi-
tational force. If any of these conditions are not satisfied, then a dif-
ferent set of differential equations is needed.

It must therefore be kept in mind that representation of the phy-
sical situation by a set of differential equations is only an approxi-
mation, albeit a valid approximation, to the real case. This arises
because the basic physical ‘law’ may be valid only over a certain do-
main of the variables, and because expressions for quantities, such as
forces, may also be valid only over a certain domain. However, within
the assumptions made, the model is an exact representation of an
idealised physical situation.

A few examples follow. The ‘laws’ used are quoted and the mathe-
matical model obtained. One assumption in each example is commented
upon, and the student should think about any other assumptions
that have been made in setting up the model, and also about the
validity of the ‘laws’ quoted, consulting, when necessary, books with
the required physical background.

1.2.1 Cooling of a hot body

A body initially at temperature 7', is surrounded by a medium at
constant temperature Ty, (T > Tm )- The cooling of the body is
taken to be governed by Newton’s law of cooling, which states that
the rate of decrease of the body temperature is proportional to the
difference between the body temperature and that of the surrounding
medium.

Let T be the temperature of the body at time ¢.

Rate of decrease of body temperature = — d7/dz.

The minus sign occurs since d7/dz is the rate of increase of tem-
perature with respect to time.
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The excess temperature =7 — Ty, .
Hence
dT
i K(T—Ty) (1.9)
where k (> 0) is the constant of proportionality.
This is the differential equation governing the cooling of the body
and is subject to the initial condition

T=T, when ¢t =0

(At any time ¢, all points of the body are assumed to have the same
temperature T.)

1.2.2 A two-mass-spring system

The system is hanging vertically as shown in Fig. 1.4. The two similar
weightless springs have natural length L and modulus of elasticity A.

Fig. 1.4



