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INTRODUCTION

The present monograph has been planned in such a
way as to form a natural companion to the author's volume
Algebralc Topology appearing at the same time in the Col-
loquium Series and hereafter referred to as AT. The
toplcs dealt with have for common denominator the rela-
tions between polytopes and general topology. The first
chapter takes up the relations between polytopes in gen-
eral and the topologies which they may receive and in
these questions we lean particularly heavily upon J. v
Tukey. The second chapter completes in certain important
.points the treatment of singular elements of AT. The
third chapter deals with mappings of spaces onfpolytopes
and certain related imbedding questions; it contains also
a -modern treatment of retraction for separable metric
spaces. The last chapter is devoted to the group of
questions centering around the general concept of local
connectedness. Comparisons with retracts are considered
at length, there is a full treatment of the homology and
fixed poilnt properties. The chapter concludes with an
outline of the relations with "homology" local connected-
ness (the so-called HLC properties).

The general notations are those of AT. In addition
_to a short reference bibliography, a mere supplement to
“that of AT, there is also given a fairly comprehensive
bibliography on locally commected spaces and retraction.
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Chapter I.

POLYTOPES

§1. AFFINE SIMPLEXES AND COMPLEXES

1. Affine Simplexes. In spite cf the evident an-

alogy with the treatment of Euclidean simplexes of (AT,
TII, VITII). it wlll be more convenient snd slso clearer to
repeat the necessary introductory definitions and proper-

ties.

Our aimplexes are considered here also as subsets

of a real vector space B whose elements are to be called
points.

Et‘

(1.1) DEFINITION. Iet oP=a ... a
be a p-simplex whose vertices are independent
points of a real vector space P . By the af-
fine p-simplex associated with oP 13 meant

the set, written 05 given by

(1.2} x-cxia1
(1.3) p=o0:x%=1,
(1.%) pY>o:odxr<1, Sx=r.

The x1's are the barycentric coordinates of x.
To the face ol = 84 see By of oP there cor-
responds the set of Boints ogtained by replacing
o< xih by 0 = xih in (1.4); 1t 1s the ol

associated with o9 and 1s called a g-face of
05. We transfer to og and to 1ts faces the
terminology previously adopted for sP. 1In par-

ticular we speak of the open or closed affine

1
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2 I. POLYTOPES

simplex, the boundary :Bap etc. The set of
&ll points in an element of BoP orof c1- s
1s denoted by |B 0P| or |c1 o3| )

(1.5) The open and the closed affine sim- ~
plexes are convex.

let xi, xt'e Clcrp . The segment 1 = X' xT'T
Joining them consistas of the pQints

(1.6) x=1t'x' 4+ t01x17, 0 { ¢, BT, + tmy,
Hence 1f x' = xiai, X' = x“j‘a1 we have

x -xiai,. xi- t! x'i + £ x”1

and we verify readily that x €[c1 oPl . Simllarly for ob.

(1.7) If 05- o394 (complementary
faces) there passes through each point x a

unique segment XTx'! with X'€oy, x''e oo e
(Sams proof as for (AT,VIII,z.1).

2.(2.1) DEFINITION. let 8 = o il,

S! = Ic{ril be two sets of affine asimplexes,
where the simplexes in each sst are dis joint.

We shall say that S' 4is a simplicial parti-
tion of S whenever each 0‘;1 is in some ij
and sach Uvj- is a union of & finite mmber

of 0",1. Thus 8' 1s a partition of 8 1in
the seuse of (AT,IV,29).

(2.2) let 8 = [q be & simplicial
partition of ‘Bap and Gip a.ny point of U’p
Then: (a) if "pcop 3" = 6%, &Pyl
1s & simplicisl partition of cg; (b) ir

aF €oyqs 8' = (6P, Jlj # 1] has the seme prop-
erty.
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Since (2.2) 1s trivial for p= 0 we assume p » 0.
Suppose  first Gpch and let x #8P. By (1.5) the seg-
ment 6Px extended meets s cel in a point x' in some
a1 and so0 xeapcvi“ Thus cl‘; i1s the union of the ele-
ments of 8'. Since &P is in no Gpcvi we only have
to prove the disjunction property for a pair &pcrv1 ,epavh,
1 #h. Now if x 1s a point common to both, 8Px extend-
od will meet 'ng in a point common to ovi’cvh and
this 1s ruled out since $ 18 & simplicial partition of
305. The treatment of (b) is essentilally similar.

(2.3) Let |o,4] be the set of all the
proper faces of “5 and ‘c"ri,’c‘rp points on

P, Then the affine simplexes

& Tyyr Ty
(2.%) ¢ =08, ... 3j3‘p, Tyg = see =<0y g
meke up a& simpliclal partition of "Iv?'

This 1s trivial for p = 0 80 we assume it for di-
mensions < p and prove it for p. Under the hypothesis
of the induction the collectlon of all the (! =&, ... 6‘1
S BRREL L terminating with &, 1is a simplicial par-
tition of o,4- Since the o are disjoint f{ ¢'] 1is
& dimplicial partition of 'Bcv, so that (2.3) follows now
from (2.2).

The deconposition of (Cl 05) by the simplexes (2.11)
is 1ts first derived (CloP)'. Usually the centroid
(:tﬁ_lﬁ-, G 3%-1-) is chosen as &P and similarly for the
faces. The corresponding (Cl crg)’ is known as the bary-
centric first derived. We can treat similarly the sim-
plexes of (Cl1 08) ', and obtain the successive derived or
barycentric derived as the case may be. In general, un-

' less otherwise stated, "derived" shall stand for "bary-
centric derived®.

(24.5) The following designations will be found very
convgnient. The simplexes of ( Clce‘}(n) will be desig-

nated by on (we omit the subscript v). Since the n
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make up & dissection of Cl cp every point x of lhe
latter belongs to cne and o*zly one °n which will- de de-
noted by c_n(x).

3. The vector space D or its subspaces may bs
metrized in various ways. For our purpose it is suf-
flcient to consider an Euclidsan metric relative to =
basg B = {bii. If x = xfbi, J = yibi (finite sums.)
guch a metric is defined by

(3.1} Adx,y) = ( 5 (xt- gh2)/e

and it has a meaning for all (x,y). The simplexes of M
are then Fuclidean and may be writtsn 0'1; a8 i AT,
The simplexes of the nth derived (Clcg) (n) have & max-
imm dlemeter: the mesh of the iewive&. i

As a speclal case one may utllize the metric (3.1}
attached to the subspace spammed by the vertices a of
o 1in 1M relative to .the base !a ! for the subspace.
We thus obtain a metric for cp, and In fact for éCloel,
given by (3.1) where x ,yi are now the barycentric co-
ordinates of x,y. This particular metric will be called
the natural metric of crp Notice that if _,q -(cv ,» the
induced metric in o, 24 Tikmetae S naturel metric.

(3.18) Remark. If no topology is specified for 05
1t will be understcod that the set has been topologized by
means of its natural metric. In point of fact the various
topologles that way be specified in the sequel for cp
will always be equivalent to the one induced by its gen~ / |
eral metric. This property is readily verified in each m
case and no further reference will be made to it later. A

(3.2) The Euclidean p-simplex o’p ia a
p-cell; its boundary Bc-p is a:.(p~-1)- ap‘xere
and ap is a p-dimensional parallelotope.

This is a consequence of (AT,I, 12.9) and the fact
that * |Clo¥| 1s & bounded convex subset of & Euclidesn
8pace (,p, the metrized subapace of the vertices.
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(3.3) et cg =&, oo a.p, be &8 simplex
11 an Huclidean space ¢? and x any point
of 6™ ., Then d(x,y), yeog, does not ex-

ceed. the maxinum distance p from x to the

vertices. (AT, VIII, 2.2).

(3.4} The diemeter of og is the length
of its longest edge (AT, VIII, 2.3).

Dy D
(3.5) Mesh (C1ol) <Py alam of.
(AT, VIII, 2.4).

(3.6) If oP 13 assigned the naturel
metric then mesh v(Cl oPy(m { V2 -Bom
) v “p+i’ !
which ~s ¢ 83 n-2 .

For in the natural metric the edges of 05 all have
the length V2 and so (3.6) 1s a consequence of (3.5).

(2.7) If x,x' are distinct points of
°$ there is an n Bl.ich that the simplexes
on(x), cn(x') containing x,x' have no
comnon vertices. (3.6).

(3.8) Let | c'nl be suck that B’nﬂ(_on
{notations of 2.5). Then nﬁn = X &a point
of &P,
(= tb M »

In the natural metric ‘a'g is a compactum and | a'ni
a collection of closed subsets with the finite intersec-
tion property. Hence /&, # ¢ aud since diam T, —0
the intersection is a point.

(3.9) Ilet x€c3 < cr]v’. Then there exists
sn n such that qn(x) hass all its vertices
in St c“} (ster in C1 ob).
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For diem cn(x) —>» 0 and the distance from x to
the set of simplexes not in St cg is positive. 2

4, Affine complexes. Just as for simplexes it is
convenlent as well as clearer to separate the affine and
other complexes. The affine complex serves to specify
the point-set which under suitable topologles becomes &
geometric or an Euclidean complex.

(ki1) DEFINITION. Iet K= {o| be a
8impliclial complex and let iAi} be its ver-
tices where {i] 1s any set whatever. Let
Iaii be vectors of a real vector space with
the following properties:

(h.2) 8y ¢ Ai is one-one;

(4.3) 1f o= Ag-.. AJ€K then 8¢s-.0,8; are
independent, and so they are the vertices
of an affine simplex denoted by o
(h.4) o po' =g nal = b, )

v’

If we transfer to iovi the incidences "is s
face of" prevalling in K, likewise the same
incidence-numbers, it becomes a complex KV:—éK,
known as an affine simplicial complex. Its re-
lation to K 1s also described by the statement:
K, 1s an effine realization of K. We also re-
fer sometimes to K as an antecedent of Kv'

We transfer to Igl the full terminclogy attached tc ™

-

Example. Clog,'Bog are affine reslizations of Cla¥, -

BoP and og 1s an open subcomplex of Cl °$'

The set cof all the points of the simplexes of Kv
is denoted by |I%I .

It follows from the definition of Kv that every
point x €[K,| satisfies a relation

(4.5) X = xia
where if x €o, considered in (4.3), the coordinates

xl,...,x'j are the barycentric coordinates of x in Oy
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It follows that the x> are unique and satisfy (1.3),
(1.4). , The x1 are known here also as the barycentric
coordinates of x. .

(L.6) Barycentric mapping. The definition is the
same a8 for Euclidean complexes (AT,VIII,6.1) and need
not be repeated.

(4.7) A noteworthy special case is when lg,, Kw are
both realizations of the same complex K. Let iAil, 1at,
Iaj‘?_l be the vertices of K, K,, K, where a,, aj'_ are the
images of Ai’ Then a; — a.i is a one-one tranasformation
which Induces a one-one barycentric mapping T, referred
to as the natural barycentric mapping Kv —K,

Wo notice the following properties:

(4.8) BEvery simplicisl complex K has an
affine realization Kv

For 1f IAil is chosen as a.base for & real vector-
space T (its elements being all the finite forms 1A
with the ti real) the three conditions (%.2), (4.3),
(4.4) are naturally satdisfied and so Kv may be con-~
structed with ay = Ai throughout.

It i1s important to observe that this special choice
of the ay is not unique. Thus consider the two-complex
K2 consisting of a B o’ with one two-face removed. K-
has the following affine realization: take a plane
triangle ABC and let D be its centroid; . consists of
the triangles DAB, DBC, DCA with all their sides and
vertices. This is a realization as a subset of a plane,
whereas the above construction would require a four-space.

(4.9) Let & be some point on o, € K.
Then:
(8) €=08y ... 84,0, <.o0 < i
is an affine simplex and
€ C %45
(b) K! = {ci 1s an affine realization



8 1. POLYTOPES

of K', and is known as a first derived of lg,;

(e} 1K, = IK}I.

This 1s an immediate consequence of (1.10) together
with (AT,IV,26).

When the mew vertices © are the centrolds of the
corresponding ¢, the affine~complex IQ, is called the
barycentric first derived. The definiticn of the nth
derived, barycentric or otherwise 1s now obvious: It is
written Fm) and is an affine realization of K'O
whtcin colnceides with Kv as g point set.

(4.10) HNotations. Extending the nota-
tions introduced in (2.5) we deslgnate by Ty
the simpliexes of K(n) {also o for 0'0) and
by cn(x) the Oy 3X.

ihe following property is needed later.

(k.11) Iet O be a point of o, and
let Kv‘ undergo the set-transformation 8 (in

the sense of AT,IV,7): S 1s the idemtity out-

aide of St o, So = G'BUV; if o",est L

Feg o= G (Bc", - o,). Then 3 1s a simplicial

partition cof Kv into a new complex gv' and

K fur I8 & subdivision of Kv'

The partition property is an immediate consequence of
(1.9). It is also clear that 8 fulfills the conditions
of (AT,IV,24.8) and so it is a subdivision.

(k.12) Consider the function d(x,y) - defined on

Kv by the expression (3.1). If K,y 1= the affine re-
alization of (%.8) with lAii as the base for the vector
space B, then d(x,y) 1is a metric for B and hence
for K1v‘ Since the natural parycentric transformation

'KW--og is one-one and preserves the barycentric co-
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ordinates, d(x,y) 1s likewise a distance-function for Ig,.
We will call this metric natural. Evidently

(k.13) All the affine realizations of the
same K with their natural metric are topologi-
cally equivalent. More precisely their nastural
barycentric mappings into cne another are topo-
logical and in fact isometric (distance-pre-

serving).
§2. GEOMETRIC COMPLEXES

5.(5.1) The natural metric provideslone mode cof top-
ologizing the set lIg,I . Another consists in assigning
to IKVI as subbase for the open sets the totality of
the stars of the vertices in sll the derived Ig(,n). When
this topology i1s chosen the complex 1s said to be geo-
metric, often denoted by K_,. The space !F'\,l with the
above topology is written ?K | and called a polytope:
The simplexes o, are also written accordingly °g and
called geomstric simplexes. As we shall see later (II,
5.1) the topology just chosen 1s the one required for our
basic mapping theorem. We call l{v: an affine antecedent °
of Kg, and call a simplicial antecedent of Fg,: a8 sim-

plicisl antecedent of Kg'

(5.2) THEOREM. A polytope IKgI is met-
rizable, and hence it is a normal Hausdorff space

(W. Wilson [a]; proof by J. Tuksy).

In another form also: the open set topology just as-
signed to lg, to turn it into a polytope is equivalent to a
topology obtainable from & distance function.

We shall denote by K(n) the nth baryesntiic de-
rived of K., by 9., o, (x) the same as in (4.10) rela-
tive to K(ﬁ), by & the vertex of Kg(n'”) in o, or

n

which 1s the same the centroid of ne The distance is
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Intreduced as a limit of functions which satisfy the tri-
angle axiom. In & complex & measure of the distance of two
points is the length of the shortest chain of simplexes
each incident with the next which joins the simplexes con-
taining the points. This lies at the root of the metric.
6. Let a,b be any two vertices of K_ and let
fo(a,b) dencte the least n if any exists such that
there is a finite sequence or "chain® of vertices
8 =8,, 8, «o0o , &, = b, where 8y 8y 4 is a ohe-simplex
of K_. If no such chain exists we set fo(a,b) = o ;
this last circumstanee occurs when and only when a,b
are in distinct components of K_. A similar function
may be Introduced for Kén) and it 1s denoted by fn(s.,b).
(6.1) If (a,b) are vertices of K and
hence also of Ké then f,(a,b) = 2fo(a,b).

I a=2a, ... ,a.n-b is as before then a=a,,
a,, &, ...,a.nnb is & chain joining a to b in
and so f (a,b) { 2 f(a,b). If a= Go, 81 b oeee
= b 1s a shortest chain in K! then we must have
<% r9, ..., with alternating incidences. For if
1< 9 {04, Or o_, 5 > a.,, then Gi could

omitted. Hence we may replace 82, G‘h, «.. by vertices
a,,8a ... @nd so a=0,8a 8

) 1 859 «eey b 18 a chain from
a to b in Kg. Therefore m = f,(a,b) 2 2n, and (6.3)
follows.

We now extend fo to !Kgl by

om>

At

o'
mt--q o

0 1f x,y are both vertices;
f (x,y) = inf {fo(a,b)i + % if only one of x,y is a
vertex;
1 1f x,y are not vertices,

where a,b range respectively over the vertices of o(x),
o(y). A simitlar function f,(x,¥) 1s defined for Kén).
(6.2) Setting d (x,y) = 2B £ (x,¥5) we find readily:



