H i B VB F B M R F

PEARSON
|
Prentice
Hall

PN B
LA S

Computer Systems
A Programmer’s Perspective

COMPUTER SYSTEM

AM

B SRR

[£] Randal E. Bryant
David R. O’Hallaron

x E : s
se| ©F I% & A& 41
‘ Publishing House of Electronics Industry
e http://www.phei.com.cn

EsMTERFE T R

RNERITENRES
(R K

Computer Systems

A Programmer’s Perspective

AL FRE SN

Ran
Dav!

[£]

TF IF & A AL
Publishing House of Electronics Industry
Jt&L - BEDING

nEE

AFBEENBTUHBENRENEARSE, QFEBURENNTPRBEEIOR | JUKERIE SR . BRI
. AERG. SISMBEURRA P MRS, BPRET KBLPMRIE, TR BIEE Eir it B R AT
T, BRI RITECR . BB G AR SR THRVLRSE, BARDMBNE TS, Sk
BAERFEMMGINT, BX—SUHHIBEZAF

ABE RN EVLRAAR LW AR EZH, FRHEHTREARSH R,

English reprint Copyright © 2006 by PEARSON EDUCATION ASIA LIMITED and Publishing House of Electronics
Industry. :

Computer Systems: A Programmer’s Perspective, [SBN: 013034074X by Randal E. Bryant, David R. O’ Hallaron.
Copyright © 2003. All Rights Reserved. '

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Prentice Hall.

This edition is authorized for sale only in the People’s Republic of China (excluding the Special Administrative Region of
Hong Kong and Macau). '

A% 43 SUR BN Eh B 7 Ml R Pearson Education 3542 308 AR WA FRZS R AR AR - R 22 R E HIsE
FEFA, AEUER T RE H R R B

A EWGH Pearson Education 54 HH HEABOLR hin %, EHEERBHE,

WIS S FBITE EF. 01-2003-8577
EHEIRME (CIP) 88

FTARRTHEYLRY = Computer Systems: A Programmer’s Perspective / (3£) fi#i 4% (Bryant, R. E.) &3,
et F Tk AR, 2006.7

(ESMTEYB R)

ISBN 7-121-02580-9

L& DA IHAESLRYE - 806 - 230 V. TP30
eh A 4548 CIP BB (2006) 55075681 5

HiEgHmH. B0
£ Wl bR e B T
WERAAT: BF LA
LR HEER T ER 1735/ B4 100036
7% . gHFERE
F A 787 x 980 1/16 ENgk: 6325 FH: 1417 FF
Bl ¥K: 20064E7 A% 1 KENR]
&£ #r: 89.007C

R%%%?Iﬂktﬂﬁﬁﬁ‘]@%, MASHEIE, HRWEHERR; HHEER, F5FEEITRKR, KR
% (010) 68279077, FREBHIFEZHFFE 2lis@phei.com.cn, ¥FAREFIEAR T K #R4ZE dbqq@phei.com.cn,

HORE i B

21 LI 5 E 10 FRREEREF M SR BOEENG, WREB LIRS E R
B, EREMA WTO GRS X, BF—SGEN BFRERE S —RIT AA MR RERFHEFH
HELEFZ— FEMEMEARATHAANRE EEZHE, RREEMNERERT IR LREE,

5HT, EEEREAHFHERIREEAFSEMNHEE AR REHERNY, MEREHFIE
5 E PR, A R8RS BB IEAE D F (5 B R B AR IR R (8 A E AME B B0b FE 5 IR AR
BAr, DMEREETEILEEE ERPGE EERRE#HKTE,

BF LR FRSERS HEIIMEAFEBHNEE, BFHRT “ESMTERESM R
517 A, XBEHHMEBFRBEE . SRR . BRE, BEARSWIREHM, AP ARE
Bobr, LUERNARBER . ARTL . RNRBRETEXN S TR, 7 RITAERT B hiksEmE b
SRR XEHA T REER T I OERNE S5EE . BERL. HEVARSEW . Bk 58S
. BRESFERAE, REBIES . BRERSZEE . KETES, R, RIMEEYS5I#HT—
BetR 33 SR RRBM , 45 BIFAR A B SRR B AN , %t 2 o 1 5 B4R R 3 SO RUAR SRR
IO B B AR A

EEBEE L, RITKESEFEEIINE L HRA TR AR R AT, i Pearson Education 34 #
BHiRER . ZARST - A/RBE HAER | BRI T 25 AR . SIBFRF AR, RS S
WEEERREF MR B FF , BB - FHR(Douglas E. Comer). BUHE - WL William
Stallings). PA4E - BFF/R (Harvey M. Deitel), JLFIHT - 3T (Uyless Black) %,

AR AR EMBTERE, RIMAE THERE, FERE AEMSHERE. &
BR%¥, FEGERE., BRAY., WLK¥E, BRETIAYE, E£PRERYE . BLTEKE,
HBFHERARRE BRERTR¥SEZRBRNBEMETHIFS S T A RIS HEE | Bk
BT TP EEA VHRFEREM A THIF . B4, wEHRBRTIILTHFERH¥FERREHEN
4 2%,

HRRFIBMEERE . BiFMEEN IR Y, MRSV ER, RIOBT KEHEBITIE,
BIEX P EA BT R EHEIE; EERRE IRIABI LT O XTHERR . BN BB T AR L
X FEXEM P HBER, RITEDS SEERENNETRERESHR, B—#T7TEIT,

WA, BATER 5 RINE 2 HIRA R E1E, RE— LB WEF TR, AR
RUH B,)5, RIVESSEINB S EBRBURKEDBRR, R KITAESHFEZHESIMEE M
MSE, AREHTEVR 2GRS EREFERROEREHE S,

B olk i i

£

L}

5K LR

HHHE

A
=

a0

-~

AT KRB
BB Bl £
AR KRFFE RS TRERERE
JERRFR A TR AT K

FEARKEERFBREE
FEITBEVASREER, ZEFELIVRRASEL

HHRRFTHEYPE SR REE
EErE B R G EFRAETERE

FHERETEYIRESEARARER . MLESIW

BRI R AR R B EWEE

P EANRBRFER T REHE
EEMBEAARFOFE, BLERM

bi@ R RN E S TRERER
LSRRG EL

EEERBEERFRPOEE . BEERZEHR
HEHEY A2 SIS, DETIHENESEER

EPAFEARRE BV EBR B . LRI
HEWHEYEMRBRE AR IR RSB EERR

HRHRFEETREFRHR

Preface

This book, Computer Systems: A Programmer’s Perspective (CS:APP), is for pro-
grammers who want to improve their skills by learning what is going on “under
the hood” of a computer system.

Our aim is to explain the enduring concepts underlying all computer systems,
and to show you the concrete ways that these ideas affect the correctness, per-
formance, and utility of your application programs. Unlike other systems books,
which are written primarily for system builders, this book is written for program-
mers, from a programmer’s perspective.

If you study and learn the concepts in this book, you will be on your way to
becoming the rare “power programmer” who knows how things work and how
to fix them when they break. You will also be prepared to study specific systems

topics such as compilers, computer architecture, operating systems, embedded
systems, and networking.

Assumptions About the Reader’s Background

The examples in the book are based on Intel-compatible processors (called “IA32”
by Intel and “x86” colloquially) running C programs on Unix or Unix-like (such
as Linux) operating systems. (To simplify our presentation, we will use the term
“Unix” as an umbrella term for systems like Solaris and Linux.) The text contains
numerous programming examples that have been compiled and run on Linux
systems. We assume that you have access to such a machine, and are able to log
in and do simple things such as changing directories.

If your computer runs Microsoft Windows, you have two choices. First, you
can get a copy of Linux (see www. 1inux.org or www.redhat . com) and install
it as a “dual boot” option, so that your machine can run either operating system.
Alternatively, by installing a copy of the Cygwin tools (www . cygwin . com), you
can have up a Unix-like shell under Windows and have an environment very close
to that provided by Linux. Not all features of Linux are available under Cygwin,
however.

We also assume that you have some familiarity with C or C++. If your only
prior experience is with Java, the transition will require more effort on your part,
but we will help you. Java and C share similar syntax and control statements.
However, there are aspects of C, particularly pointers, explicit dynamic memory
allocation, and formatted I/O, that do not exist in Java. Fortunately, C is a small
language, and it is clearly and beautifully described in the classic “K&R” text
by Brian Kernighan and Dennis Ritchie [40]. Regardless of your programming
background, consider K&R an essential part of your personal systems library.

Several of the early chapters in the book explore the interactions between C
programs and their machine-language counterparts. The machine language ex-
amples were all generated by the GNU ccc compiler running on an Intel 1A32

Preface

processor. We do not assume any prior experience with hardware, machine lan-
guage, or assembly-language programming.

New to C: Advice on the C Programming Language

To help readers whose background in C programming is weak (or nonexistent), we have also included
these special notes to highlight features that are especially important in C. We assume you are familiar
with C++ or Java. sl 1) :

How to Read the Book

Learning how computer systems work from a programmer’s perspective is great
fun, mainly because it can be done so actively. Whenever you learn some new
thing, you can try it out right away and see the result first hand. In fact, we
believe that the only way to learn systems is to do systems, either working concrete
problems, or writing and running programs on real systems.

This theme pervades the entire book. When a new concept is introduced, it
is followed in the text by one or more practice problems that you should work
immediately to test your understanding. Solutions to the practice problems are
at the end of each chapter (look for the blue edge). As you read, try to solve
each problem on your own, and then check the solution to make sure you are
on the right track. Each chapter is followed by a set of homework problems of
varying difficulty. Your instructor has the solutions to the homework problems
in an instructor’s manual. For each homework problem, we show a rating of the
amount of effort we feel it will require:

& Should require just a few minutes. Little or no programming required.

#¢ Might require up to 20 minutes. Often involves writing and testing some
code. Many of these are derived from problems we have given on exams.

#e¢ Requires a significant effort, perhaps 1-2 hours. Generally involves
writing and testing a significant amount of code.

eee¢ A lab assignment, requiring up to 10 hours of effort.

Each code example in the text was formatted directly, without any manual inter-
vention, from a C program compiled with Gcc version 2.95.3, and tested on a Linux
system with a 2.2.16 kernel. All of the source code is available from the CS:APP
Web page (csapp.cs.cmu.edu). In the text, the file names of the source pro-
grams are documented in horizontal bars that surround the formatted code. For
example, the program in Figure .1 can be found in the file hello.c in directory
code/intro/. We encourage you to try running the example programs on your
system as you encounter them.

Finally, some sections (denoted by a «*») contain material that you might find
interesting, but that can be skipped without any loss of continuity.

Preface

code/intro/hello.c
1 #include <stdio.h>
3 int main()
a4 {
5 printf("hello, world\n");
6 '}
code/intro/hello.c

Figure P.1 A typical code example.

Aside: What is an aside? : ' i

You will encounter asides of this form throughout the text. Asudes are parenﬂmetlcal remadts ,‘ at give you
some additional insight into the current topic. Asides serve a number of purposes. Some are little history
lessons. For example, where did C, Linux, and the Internet come from? Other asidesm meant to clarify
ideas that students often find confusing. For example, what is the difference etv ‘
and block? Other asides give real-world examples. For example, ‘how a floatir
French rocket, or what the geometry of a real IBM disk drive Iooks m@ Fma!ly, some addes mjust
" stuff. For example, what is a “hoinky”?

Origins of the Book

The book stems from an introductory course that we developed at Carnegie Mel-
lon University in the Fall of 1998, called 15-213: Introduction to Computer Systems
(ICS) [7]. The ICS course has been taught every semester since then, each time to
about 150 students, mostly sophomores in computer science and computer engi-
neering. It has since become a prerequisite for most upper-level systems courses
in the CS and ECE departments at Carnegie Mellon.

The idea with ICS was to introduce students to computers in a different way.
Few of our students would have the opportunity to build a computer system. On
the other hand, most students, even the computer engineers, would be required
to use and program computers on a daily basis. So we decided to teach about
systems from the point of view of the programmer, using the following filter: We
would cover a topic only if it affected the performance, correctness, or utility of
user-level C programs.

For example, topics such as hardware adder and bus designs were out. Top-
ics such as machine language were in, but instead of focusing on how to write
assembly language, we would look at how C constructs such as pointers, loops,
procedure calls and returns, and switch statements were translated by the com-
piler. Further, we would take a broader and more realistic view of the system
as both hardware and systems software, covering such topics as linking, loading,
processes, signals, performance optimization, measurement, I/O, and network and
concurrent programming.

. 19 .

Preface

This approach allowed us to teach the ICS course in a way that was practical,
concrete, hands-on, and exciting for the students. The response from our students
and faculty colleagues was immediate and overwhelmingly positive, and we real-
ized that others outside of CMU might benefit from using our approach. Hence

this book, which we developed over a period of two years from the ICS lecture
notes.

Aside: ICS numerology.

The numerology of the ICS course is a little strange. About halfway through the first semester, we realized
that the assigned course number (15-213) was also the CMU zip code, hence the motto “15-213: The
course that gives CMU its zip!”. By chance, the alpha version of the manuscript was printed on February
13, 2001 (2/13/01). When we presented the course at the SIGCSE education conference, the talk was
scheduled in Room 213. And the final version of the book has 13 chapters It's a good thing we re not
supecstttiuns! ' i

Overview of the Book

The CS:APP book consists of 13 chapters designed to capture the core ideas in
computer systems:

e Chapter 1: A Tour of Computer Systems. This chapter introduces the major
ideas and themes in computer systems by tracing the life cycle of a simple
“hello, world” program.

o Chapter2: Representing and Manipulating Information. We cover computer
arithmetic, emphasizing the properties of unsigned and two’s complement
number representations that affect programmers. We consider how numbers
are represented and therefore what range of values can be encoded for
a given word size. We consider the effect of casting between signed and
unsigned numbers. We cover the mathematical properties of arithmetic
operations. Students are surprised to learn that the (two’s complement)
sum or product of two positive numbers can be negative. On the other hand,
two’s complement arithmetic satisfies ring properties, and hence a compiler
can transform multiplication by a constant into a sequence of shifts and
adds. We use the bit-level operations of C to demonstrate the principles and
applications of Boolean algebra. We cover the IEEE floating point format in
terms of how it represents values and the mathematical properties of floating
point operations.

Having a solid understanding of computer arithmetic s critical to writing
reliable programs. For example, one cannot replace the expression (x<y)
with (x-y<0) due to the possibility of overflow. One cannot even replace it
with the expression (-y<-x) due to the asymmetric range of negative and
positive numbers in the two’s complement representation. Arithmetic over-
flow is a common source of prograrhming errors, yet few other books cover

the properties of computer arithmetic from a programmer’s perspective.
.20 -

o Chapter 3: Machine-Level Representation of Programs. We teach students
how to read the 1A32 assembly language generated by a C compiler. We
cover the basic instruction patterns generated for different control con-
structs, such as conditionals, loops, and switch statements. We cover the
implementation of procedures, including stack allocation, register usage con-
ventions and parameter passing. We cover the way different data structures

such as structures, unions, and arrays are allocated and accessed. Learning

the concepts in this chapter helps students become better programmers, be-
cause they understand how their programs are represented on the machine.
Another nice benefit is that students develop a concrete understanding of
pointers.

Chapter 4: Processor Architecture. This chapter covers basic combinational
and sequential logic elements and then shows how these elements can be
combined in a datapath that executes a simplified subset of the IA32 in-
struction set called “Y86.” We begin with the design of a single-cycle non-
pipelined datapath, which we extend into a five-stage pipelined design. The
control logic for the processor designs in this chapter are described using a
simple hardware description language called HCL. Hardware designs writ-
ten in HCL can be compiled and linked into graphical processor simulators
provided with the textbook.

Chapter 5: Optimizing Program Performance. In this chapter we intro-
duce a number of techniques for improving code performance. We start
with machine-independent program transformations that should be stan-
dard practice when writing any program on any machine. We then progress
to transformations whose efficacy depends on the characteristics of the tar-
get machine and compiler. To motivate these transformation, we introduce
a simple operational model of how modern out-of-order processors work,
and then show students how to use this model to improve the performance
of their C programs.

Chapter 6: The Memory Hierarchy. The memory system is one of the most
visible parts of a computer system to application programmers. To this
point, the students have relied on a conceptual model of the memory system
as a linear array with uniform access times. In practice, a memory system
is a hierarchy of storage devices with different capacities, costs, and access
times. We cover the different types of RAM and ROM memories and the
geometry and organization of modern disk drives. We describe how these
storage devices are arranged in a hierarchy. We show how this hierarchy is
made possible by locality of reference. We make these ideas concrete by
introducing a unique view of a memory system as a “memory mountain”
with ridges of temporal locality and slopes of spatial locality. Finally, we
show students how to improve the performance of application programs by
improving their temporal and spatial locality.

Chapter 7: Linking. This chapter covers both static and dynamic link-
ing, including the ideas of relocatable and executable object files, symbol
resolution, relocation, static libraries, shared object libraries, and position-
independent code. Linking is not covered in most systems texts, but we

Preface

.21.

Preface

<22

cover it for several reasons. First, some of the most confusing errors that
students can encounter are related to glitches during linking, especially for
large software packages. Second, the object files produced by linkers are
tied to concepts such as loading, virtual memory, and memory mapping,.
Chapter 8: Exceptional Control Flow. In this part of the course we break the
single-program model by introducing the general concept of exceptional con-
trol flow (i.e., changes in control flow that are outside the normal branches
and procedure calls). We cover examples of exceptional control flow that
exist at all levels of the system, from low-level hardware exceptions and inter-
rupts, to context switches between concurrent processes, to abrupt changes
in control flow caused by the delivery of Unix signals, to the nonlocal jumps
in C that break the stack discipline.

This is the part of the book where we introduce students to the funda-
mental idea of a process. Students learn how processes work and how they
can be created and manipulated from application programs. We show them
how application programmers can make use of multiple processes via Unix
system calls. When students finish this chapter, they are able to write a Unix
shell with job control.

Chapter 9: Measuring Program Execution Time. This chapter teaches stu-
dents how computers keep track of time (interval timers, cycle timers, and
system clocks), the sources of error when we try to use these times to measure
running time, and how to exploit this knowledge to get accurate measure-
ments. To the best of our knowledge, this is unique material that has never
been discussed before in any consistent way. We include the topic at this
point because it requires an understanding of assembly language, processes,
and caches.

Chapter 10: Virtual Memory. Our presentation of the virtual memory system
seeks to give students some understanding of how it works and its charac-
teristics. We want students to know how it is that the different simultaneous
processes can each use an identical range of addresses, sharing some pages
but having individual copies of others. We also cover issues involved in
managing and manipulating virtual memory. In particular, we cover the op-
eration of storage allocators such as the Unixmalloc and free operations.
Covering this material serves several purposes. It reinforces the concept that
the virtual memory space is just an array of bytes that the program can sub-
divide into different storage units. It helps students understand the effects of
programs containing memory referencing errors such as storage leaks and
invalid pointer references. Finally, many application programmers write
their own storage allocators optimized toward the needs and characteristics
of the application.

Chapter 11: System-Level I/0. We cover the basic concepts of Unix I/O such
as files and descriptors. We describe how files are shared, how I/O redi-
rection works, and how to access file metadata. We also develop a robust
buffered I/O package that deals correctly with short counts. We cover the C
standard I/O library and its relationship to Unix /O, focusing on limitations
of standard I/O that make it unsuitable for network programming. In gen-

Preface

eral, the topics covered in this chapter are building blocks for the next two
chapters on network and concurrent programming,.

o Chapter 12: Network Programming. Networks are interesting /O devices
to program, tying together many of the ideas that we have studied earlier
in the text, such as processes, signals, byte ordering, memory mapping, and
dynamic storage allocation. Network programs also provide a compelling
context for concurrency, which is the topic of the next section. This chapter
is a thin slice through network programming that gets the students to point
where they can write a Web server. We cover the client-server model that
underlies all network applications. We present a programmer’s view of the
Internet, and show students how to write Internet clients and servers using
the sockets interface. Finally, we introduce HTTP and develop a simple
iterative Web server. '

o Chapter 13: Concurrent Programming. This chapter introduces students to
concurrent programming using Internet server design as the running moti-
vational example. We compare and contrast the three basic mechanisms for
writing concurrent programs — processes, I/O multiplexing, and threads —
and show how to use them to build concurrent Internet servers. We cover
basic principles of synchronization using P and V semaphore operations,
thread safety and reentrancy, race conditions, and deadlocks.

Coursgs Based on the Book

Instructors can use the CS:APP book to teach five different kinds of systems
courses (Figure .2). The particular course depends on curriculum requirements,

. Course
Chapter | Topic ORG ORG+ ICS ICS+ SP

1 Tour of systems . . .
2 Data representation . . o ()
3 Machine language .) .
4 "Processor architecture . .
5 Code optimization . . °
6 Memory hierarchy © (a) . . . o (a)
7 Linking © (©| O (© | e
8 Exceptional control flow ° ° °
9 Performance measurement . .

10 Virtual memory ® (b) ° ° . °

1 System-level VO . .

12 Network programming . .

13 Concurrent programming °)

Figure P.2 Five systems courses based on the CS:APP book. Notes: (a) Hardware only, (b) No dynamic storage
allocation, (c) No dynamic linking, (d) No floating point. ICS+ is the 15-213 course from Carnegie Mellon.

« 24 -

personal taste, and the backgrounds and abilities of the students. From left to
right in the figure, the courses are characterized by an increasing emphasis on the
programmer’s perspective of a system. Here is a brief description:

o ORG: A computer organization course with traditional topics covered in
an untraditional style. Traditional topics such as logic design, processor ar-
chitecture, assembly language, and memory systems are covered. However,
there is more emphasis on the impact for the programmer. For example, data
representations are related back to their impact on C programs. Students
learn how C constructs are represented in machine language.

s ORG+: The ORG course with additional emphasis on the impact of hard-
ware on the performance of application programs. Compared to ORG, stu-
dents learn more about code optimization and about improving the memory
performance of their C programs.

+ ICS: The baseline ICS course, designed to produce enlightened program-
mers who understand the impact of the hardware, operating system, and
compilation system on the performance and correctness of their application
programs. A significant difference from ORG+ is that low-level processor
architecture is not covered. Instead, programmers work with a higher-level
model of a modern out-of-order processor. The ICS course fits nicely into a
10-week quarter, and can also be stretched to a 15-week semester if covered
at a more leisurely pace.

¢ ICS+: The baseline ICS course with additional coverage of systems program- .
ming topics such as system-level I/O, network programming, and concurrent
programming. This is the semester-long Carnegie Mellon course, which cov-
ers every chapter in CS:APP except low-level processor architecture.

¢ SP: A systems programming course. Similar to the ICS+ course, but drops
floating point and performance optimization, and places more emphasis on
systems programming, including process control, dynamic linking, system-
level I/O, network programming, and concurrent programming. Instructors
might want to supplement from other sources for advanced topics such as
daemons, terminal control, and Unix IPC.

The main message of Figure .2 is that the CS:APP book gives you a lot of options.
If you want your students to be exposed to lower-level processor architecture, then
that option is available via the ORG and ORG+ courses. On the other hand, if
you want to switch from your current computer organization course to an ICS or
ICS+ course, but are wary are making such a drastic change all at once, then you
can move towards ICS incrementally. You can start with ORG, which teaches the
traditional topics in an non-traditional way. Once you are comfortable with that
material, then you can move to ORG+, and eventually to ICS. If students have
no experience in C (for example they have only programmed in Java), you could
spend several weeks on C and then cover the material of ORG or ICS.

Finally, we note that the ORG+ and SP courses would make a nice two-term
(either quarters or semesters) sequence. Or you might consider offering ICS+ as
one term of ICS and one term of SP.

Classroom-Tested Laboratory Exercises

The ICS+ course at Carnegie Mellon receives very high evaluations from students.
Median scores of 5.0/5.0 and means of 4.6/5.0 are typical. Students cite the
fun, exciting, and relevant laboratory exercises as the primary reason. Here are
examples of the labs that are provided with the book:

Data Lab. This lab requires students to implemerit simple logical and arith-
metic functions, but using a highly restricted subset of C. For example, they
must compute the absolute value of a number using only bit-level opera-
tions. This lab helps students understand the bit-level representations of C
data types and the bit-level behavior of the operations on data.

Binary Bomb Lab. A binary bomb is a program provided to students as an
object code file. When run, it prompts the user to type in 6 different strings.
If any of these is incorrect, the bomb “explodes,” printing an error message
and logging the event on a grading server. Students must “defuse” their
own unique bomb by disassembling and reverse engineering the program
to determine what the 6 strings should be. The lab teaches students to
understand assembly language, and also forces them to learn how to use a
debugger.

Buffer Overflow Lab. Students are required to modify the run-time behavior
of a binary executable by exploiting a buffer overflow bug. This lab teaches
the students about the stack discipline and teaches them about the danger
of writing code that is vulnerable to buffer overflow attacks.

Architecture Lab. Several of the homework problems of Chapter 4 could be
combined into a lab assignment, where students modify the HCL description
of a processor to add new instructions, change the branch prediction policy,
or add or remove bypassing paths and register ports. The resulting processors
can be simulated and run through automated tests that will detect most
of the possible bugs. This lab lets students experience the exciting parts
of processor design without learning and constructing complex, low-level
models in a language such as Verilog or VHDL.

Performance Lab. Students must optimize the performance of an applica-
tion kernel function such as convolution or matrix transposition. This lab
provides a very clear demonstration of the properties of cache memories
and gives them experience with low-level program optimization.

Shell Lab. Students implement their own Unix shell program with job con-
trol, including the ctrl-c and ctrl-z keystrokes, £g, bg, and jobs com-
mands. This is the student’s first introduction to concurrency, and gives them
a clear idea of Unix process control, signals, and signal handling,

Malloc Lab. Students implement their own version of malloc, free, and
(optionally) realloc. This lab gives students a clear understanding of data
layout and organization, and requires them to evaluate different trade-offs
between space and time efficiency.

Preface -

«25.

Preface

.26-

e Proxy Lab. Students implement a concurrent-Web proxy that sits between
their browser and the rest of the World Wide Web. This lab exposes the
students to such topics as web clients and servers, and ties together many of
the concepts from the course, such as byte ordering, file I/O, process control,
signals, signal handling, memory mapping, sockets, and concurrency.

The CS:APP Instructor’s Manual has a detailed discussion of the labs, as well as
directions for downloading the support software.

Acknowledgments

We are deeply indebted to many friends and colleagues for their thoughtful crit-
icisms and encouragement. A special thanks to our 15-213 students, whose in-
fectious energy and enthusiasm spurred us on. Nick Carter and Vinny Furia
generously provided their malloc package.

Guy Blelloch, Greg Kesden, Bruce Maggs, and Todd Mowry taught the course
over multiple semesters, gave us encouragement, and helped improve the course
material. Herb Derby provided early spiritual guidance and encouragement. Al-
lan Fisher, Garth Gibson, Thomas Gross, Satya, Peter Steenkiste, and Hui Zhang
encouraged us to develop the course from the start. A suggestion from Garth
early on got the whole ball rolling, and this was picked up and refined with the
help of a group led by Allan Fisher. Mark Stehlik and Peter Lee have been very
supportive about building this material into the undergraduate curriculum. Greg
Kesden provided helpful feedback on the impact of ICS on the OS course. Greg
Ganger and Jiri Schindler graciously provided some disk drive characterizations
and answered our questions on modern disks. Tom Stricker showed us the mem-
ory mountain. James Hoe provided useful ideas and feedback on how to present
processor architecture.

A special group of students, Khalil Amiri, Angela Demke Brown, Chris Colo-
han, Jason Crawford,. Peter Dinda, Julio Lopez, Bruce Lowekamp, Jeff Pierce,
Sanjay Rao, Balaji Sarpeshkar, Blake Scholl, Sanjit Seshia, Greg Steffan, Tiankai
Tu, Kip Walker, and Yinglian Xie were instrumental in helping us develop the
content of the course. In particular, Chris Colohan established a fun (and funny)
tone that persists to this day, and invented the legendary “binary bomb” that has
proven to be a great tool for teaching machine code and debugging concepts.

Chris Bauer, Alan Cox, Peter Dinda, Sandhya Dwarkadis, John Greiner,
Bruce Jacob, Barry Johnson, Don Heller, Bruce Lowekamp, Greg Morrisett, Brian
Noble, Bobbie Othmer, Bill Pugh, Michael Scott, Mark Smotherman, Greg Stef-
fan, and Bob Wier took time that they did not have to read and advise us on
early drafts of the book. A very special thanks to Peter Dinda (Northwestern
University), John Greiner (Rice University), Wei Hsu (University of Minnesota),
Bruce Lowekamp (William & Mary), Bobbie Othmer (University of Minnesota),
Michael Scott (University of Rochester), and Bob Wier (Rocky Mountain Col-
lege) for class testing the Beta version. A special thanks to their students as well!

We would also like to thank our colleagues at Prentice Hall. Marcia Horton,
Eric Frank, and Harold Stone have been unflagging in their support and vision.
Harold also helped us present an accurate historical perspective on RISC and
CISC processor architectures. Jerry Ralya provided sharp insights and taught us
a lot about good writing.

Finally, we would like to acknowledge the great technical writers Brian Kern-
ighan and the late W. Richard Stevens, for showing us that technical books can be
beautiful.

Thank you all.

RANDY BRYANT
DAVE O’HALLARON

Preface

.27.

About the Authors

« 28 -

Randal E. Bryant received the Bachelor’s degree from the University of
Michigan in 1973 and then attended graduate school at the Massachusetts In-
stitute of Technology, receiving the Ph.D. degree in computer science in 1981. He
spent three years as an Assistant Professor at the California Institute of Technol-
ogy and has been on the faculty at Carnegie Mellon since 1984. He is currently
the President’s Professor of Computer Science and head of the Department of
Computer Science. He also holds a courtesy appointment with the Department
of Electrical and Computer Engineering.

He has taught courses in computer systems at both the undergraduate and
graduate level for over 20 years. Over many years of teaching computer archi-
tecture courses, he began shifting the focus from how computers are designed to
one of how programmers can write more efficient and reliable programs if they
understand the system better. Together with Prof. O’Hallaron, he developed the
course “Introduction to Computer Systems” at Carnegie Mellon that is the basis
for this bobk. He has also taught courses in algorithms and programming.

Prof. Bryant’s research concerns the design of software tools to help hard-
ware designers verify the correctness of their systems. These include several types
of simulators, as well as formal verification tools that prove the correctness of
a design using mathematical methods. He has published over 100 technical pa-
pers. His research results are used by major computer manufacturers including
Intel, Motorola, IBM, and Fujitsu. He has won several major awards for his
research. These include two inventor recognition awards and a technical achieve-
ment award from the Semiconductor Research Corporation, the Kanellakis The-
ory and Practice Award from the Association for Computer Machinery (ACM),
and the W. R. G. Baker Award and a Golden Jubilee Medal from the Institute
of Electrical and Electronics Engineers (IEEE). He is a Fellow of both the ACM

" and the IEEE.

David R. O’Hallaron received the Ph.D. degree in computer science from
the University of Virginia in 1986. After a stint at General Electric, he joined
the Carnegie Mellon faculty in 1989 as a Systems Scientist. He is currently an
Associate Professor in the Departments of Computer Science and Electrical and
Computer Engineering.

He has taught computer systems courses at the undergraduate and graduate
levels, on such topics as computer architecture, introductory computer systems,
parallel processor design, and Internet services. Together with Prof. Bryant, he
developed the course “Introduction to Computer Systems” that is the basis for
this book.

Prof. O’Hallaron and his students perform research in the area of computer
systems. In particular, they develop software systems to help scientists and en-
gineers simulate nature on computers. The best known example of their work

