Mark Watson

Artificial Intelligence in the
Era of Neural Networks
and Chaos Theory

[| Raw Speech Data: 'Yes' and 'No'

e

e
er o
..
.
2

e

il L 1} ‘ -~

Springer-Verlag

54|
Mark Watson

Common LISP
Modules

Artificial Intelligence in the Era
of Neural Networks and Chaos Theory

With 35 Illustrations

o

E9261703

Springer-Verlag
New York Berlin Heidelberg London
Paris Tokyo Hong Kong Barcelona

Mark Watson

Science Applications International Corporation
10260 Campus Point Drive

San Diego, CA 92121

US.A.

Printed on acid-free paper.

© 1991 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010,
USA), except for bricf excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information storage and retricval, clectronic adaptation, computer software, or by similar or
dissimilar methodology now known or hercafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former
are not espccially identificd, is not to be taken as a sign that such names, as understood by the Trade Marks
and Mecrchandise Marks Act, may accordingly be used frecly by anyone.

Copy produced using the author’s PostScript file.
Printed and bound by Book-mart Press, North Bergen, New Jersey.
Printed in the United States of America.

987654321

ISBN 0-387-97614-0 Springer-Verlag New York Berlin Heidelberg
ISBN 3-540-97614-0 Springer-Verlag Berlin Heidelberg New York

Preface

While creativity plays an important role in the advancement of computer science,
great ideas are built on a foundation of practical experience and knowledge. This
book presents programming techniques which will be useful in both Al projects and
more conventional software engineering endeavors. My primary goal is to enter-
tain, to introduce new technologies and to provide reusable software modules for
the computer programmer who enjoys using programs as models for solutions to

hard and interesting problems. If this book succeeds in entertaining, then it will
certainly also educate.

Iselected the example application areas covered here for their difficulty and have
provided both program examples for specific applications and (I hope) the method-
ology and spirit required to master problems for which there is no obvious solution.

I developed the example programs on a Macintosh™ using the Macintosh
Common LISP™ development system capturing screen images while the example
programs were executing. To ensure portability to all Common LISP environments,
I have provided a portable graphics library in Chapter 2.

All programs in this book are copyrighted by Mark Watson. They can be freely
used in any free or commercial software systems if the following notice appears in
the fine print of the program’s documentation: “This program contains software
written by Mark Watson.” No royalties are required.

The program miniatures contained in this book may not be distributed by posting
in source code form on public information networks, or in printed form without my
written permission.

I will provide Floppy disks (Macintosh™ or IBM PC™ format) containing the
source code to all example programs listed in this book for $12 (order from my
address below). This software contained in this book is “as is” with no warranties
or proof of correctness; the user of this software accepts all liabilities for its use. I
also welcome other correspondence (preferably via electronic mail). I can be
contacted on the following public information services:

Compuserve address: 75765,556
BIX: wmark
Home address: 535 Mar Vista Dr. Solana Beach, CA 92075

Acknowledgments

I'would like to thank my wife Carol for encouragement while preparing this book;
my company, SAIC, for supporting my research in Al and Neural Network
technologies; Tim Kraft, George Works, and David Rumelhart for many discussions
concerning neural network technology; Bob Beyster, Carl Rindfleisch, John Benepe,

vi Preface

John Thompson, Bobby Hunt, John Penhune, Tom Bache, Duane Knize, Larry
Kull, Larry Hunt, and Jim Martin for supporting my Al research at SAIC; Carol
Watson, Cris Kobryn, and Tim Kraft for reviewing rough drafts of this book; my
father, Ken Watson, for the use of his laser printer in preparing this book; my agent,
Bill Gladstone, and his assistant, Matt Wagner; my editors Gerhard Rossbach,
Suzanne Anthony, and Kenneth Dreyhaupt; and Nancy Wilson for the excellent job
editing my book. I would also like to thank the authors of all the books in the
bibliography section. I have learned a great deal from them.

Contents

Preface

Part 1: Introduction and Device Independent Graphics

1. Introduction

2. Basic Software Tools: Machine-Independent Graphics

Part 2: Artificial Neural Networks

3. The Substrates of Intelligence, a Neural Network Primer
4. Pattern Recognition Using Hopfield Neural Networks

5. Speech Recognition Using Neural Networks
6. Recognition of Handwritten Characters
7. Adaptive Neural Networks

Part 3: Natural Language Processing

8. Representing Natural Language as LISP Data
Structures and LISP Code
9. Natural Language Interface to a Library Database

Part 4: Expert-Systems
10. Expert-Systems

Part 5: Search

11. Heuristic Network Search Algorithms
12. A Chess-Playing Program

Part 6: Chaos Theory

13. Introduction to Chaos Theory
14. Fractal Images

Annotated Bibliography

Index

1
5

11
49
61
71
79

97
117

137

153
165

187
193

203

205

1
Introduction

Computer programmers have tried to simulate intelligent behavior with programs
since the invention of computers. It is easy to be sympathetic with pioneering
computer scientists who predicted human-class cognitive performance out of
computers when their first experiences showed that even early computers' arithmetic
ability far surpassed that of humans. With the benefit of hindsight, it is clear that
artificial intelligence (Al) practitioners promised too much too soon.

We now know that human beings far outclass even supercomputers in pattern
recognition and associative memory recall. A common (and much enjoyed) debate
deals with the likelihood of AI hardware/software systems rivaling humans in
cognitive tasks. This debate will not be covered in this book! The reader of this book
will gain insight into the creative process needed to break down old technology
barriers and will develop an optimistic "can do" attitude.

1.1 Overview

Except where noted, the chapters in this book can be referenced independently.
Chapter 2 contains the device independent graphics primitives used in this book.
The neural network simulator developed in chapter 3 forms a conceptual basis for
all subsequent treatment of neural networks in chapters 4 through 7. The material
in chapter 9 is based on the natural language parsing techniques presented in chapter
8.

Each chapter is generally structured as: background information, theory, a
discussion of sample programs, program listings, program output, additional
information on the execution of the sample programs, and suggested projects. There
are five sections in this book:

1.1.1 Neural networks

Chapter 3 provides background to the theory and usefulness of neural networks, and
presents a neural network simulator which will be used in a speech recognition
system in chapter 5 and a handwriting recognition system in Chapter 6. Chapter 4
introduces associative memory systems using Hopfield neural networks. Chapter 7
introduces the biologically inspired neural network model ART2 of Stephen
Grossberg and Gail Carpenter.

2 Introduction

1.1.2 Natural language processing

Chapter 8 introduces syntax-based parsing techniques with an animated parsing
program. Chapter 9 adds semantic processing to syntactic analysis and compares
and contrasts the example library database query program to programs using
Conceptual Dependency theory.

1.1.3 Expert-systems

Expert-systems, usually embedded in larger software systems, are becoming a
standard software engineering tool. Sample programs in chapter 10 demonstrate
forward and backward chaining techniques. Advice is offered in the evaluation of
commercial expert-system shells.

1.1.4 Search

A software module for performing A* heuristic network searches is developed in
chapter 11. A simple but effective chess playing program is developed in chapter
12.

1.1.5 Chaos theory

Chapter 13 introduces chaos theory. Chapter 14 contains sample programs for
generating Mandelbrot set plots and iterated function system plots.

1.2 Prerequisites

Ideally this book should be read with the benefit of a computer system with a LISP
compiler since all chapters contain, as program miniatures, small programs written
to illustrate an idea or concept. Note: All programs are implemented in Common
LISP. However, the examples should be easily portable to other LISP dialects. The
neural network, and fractal examples can be ported to other languages like C and
Pascal since they do not rely on the symbolic features of the LISP programming
language.

This book assumes a reading knowledge of LISP and the implementation of a set
of graphics primitives described in chapter 2 for creating a graphics window and
performing simple graphics operations in this window. This set of primitives can be
written in about two pages of code in any Common LISP system that provides
simple graphics support; once this library is written, all of the miniatures presented

1.3 Conventions 3

in this book should execute in all Common LISP environments using a LISP listener
window for user interaction with graphics going to a separate window.

1.3 Conventions

Key words appear in bold when first introduced. All program literals will be in italic
when they appear in text and in comments in the program listings. All program test
outputs have user responses in bold text with program output shown in normal
typeface. Long program comments will be blocked off separately and indented to
the same column as the surrounding text. Short comments appear on the same line
as LISP code. Example programs are printed in Helvetica type.

2
Basic Software Tools:
Machine-Independent Graphics

One of the best uses for a high-level language like Common LISP is in the rapid
prototyping of window-based user interfaces, now an accepted part of the software
development process. Common LISP is especially appropriate for developing user
interfaces when augmented with one of the current object oriented programming
(OOP) packages: Object Lisp, Common LISP object system (CLOS), or Portable
Common Loops (PCL).

However, one requirement for a programming language book is to enable readers
to effortlessly get the sample programs in a book up and running (with no
modifications!) on their computer and within their language environment. For this
reason, the example programs in this book will use a simple set of graphic primitives
and will not use any OOP language extensions despite their obvious benefit. Once
the graphics library described below is implemented, all example programs should
execute without modification on any system.

The examples in this book use the following graphics primitives:

init-plot — Creates a graphics window

plot-fill-rect — Fills a rectangle with a gray-scale value

plot-size-rect — Plots a rectangle whose size is specified by a gray-scale value
clear-plot — Clears the graphics window

pen-width — Sets the default line-plotting width

plot-frame-rect — Draws a rectangle

plot-line — Draws a line

show-plot — Makes visible and unobscured the graphics window
plot-string — Plots a string of text

plot-string-bold — Plots a string of bold text
plot-string-italic — Plots a string of italic text
plot-mouse-down — If the mouse is clicked, returns the x-y click position

Here is an example implementation of these primitives for the Macintosh running
Macintosh Common LISP:

6 Basic Software Tools

; Common plot routines for Common LISP Compatibility — for MACINTOSH

; Externally callable functions:

; init-plot() ;; creates a graphics window

; plot-fill-rect(x y xsize ysize value) ;; fills a rectangle with a gray-scale value
; plot-size-rect(x y xsize ysize value) ;; plots a rectangle value pixels wide
; clear-plot() ;; clears the graphics window

; pen-width (nibs) ;» sets the pen drawing width

; plot-frame-rect(x y xsize ysize) ;; plots a frame rectangle

; plot-line(x1 y1 x2 y2) ;; plots a line between two points

; show-plot() ;; shows graphics window

; plot-string(x y str) ;; plots a string at position (x y)

; plot-string-bold(x y str) ;; plots a bold string at position (x)
; plot-string-italic(x y str) ;» plots a italic string at position (x y)
; plot-mouse-down() ;; returns position of mouse click

; Initializes a standard plot window:

(defun init-plot (&optional (title "Plot Window") (xSize 250) (ySize 250))
(setq *w*
(oneof *window* :window-title title
:window-size (make-point xSize ySize)
:window-type :document-with-zoom)))

; Fills in a rectangle with one of five gray-scale values:

(defun plot-fill-rect (x y xsize ysize pattern)
(setq pattern (truncate pattern))
(let ((ppp *black-pattern®))
(if (< pattern 1)
(setq ppp *white-pattern*)
(if (equal pattern 1)
(setq ppp *light-gray-pattern*)
(if (equal pattern 2)
(setq ppp *gray-pattern*)
(if (equal pattern 3)
(setq ppp *dark-gray-pattern*)
(setq ppp *black-pattern*)))))

Graphics Primitives 7

(ask *w* (fill-rect ppp x y (+ x xsize) (+ y ysize)))))

; Makes a black rectangle of size proportional to val. This is an alternative
; to using function plot-fill-rect for showing graphically the value of a number.

(defun plot-size-rect (x y xsize ysize val)
(setq val (min val xsize))
(ask *w* (erase-rect x y (+ X xsize) (+ y ysize)))
(ask *w* (fill-rect *black-pattern* x y (+ x val) (+ y val))))

; Clears (erases) the plot window:

(defun clear-plot ()
(ask *w* (fill-rect *white-pattern* 0 0 400 400)))

; Sets the drawing size for the pen:

(defun pen-width (nibs)
(ask *w* (set-pen-size (make-point nibs nibs))))

; Frames a rectangle of size (xsize ysize) at position (xy:

(defun plot-frame-rect (x y xsize ysize)
(let ((x2 (+ x xsize))
(Y2 (+y ysize)))
(ask *w* (frame-rect x y x2 y2))))

; Draws a line between two points:

(defun plot-line (x1 y1 x2 y2)
(ask *w* (move-to x1 y1))
(ask *w* (line-to x2 y2)))

8 Basic Software Tools

; Shows plot window if it is obscured:

(defun show-plot ()
(ask *w* (window-select)))

; Plots a string at position (x y):

(defun plot-string (x y str &optional (size 10))
(setq x (truncate x) y (truncate y))
(ask *w* (set-window-font (list "Times" :plain size)))
(ask *w* (move-to x y))
(princ str *w*))

; Plots a string in bold font at position (x y):

(defun plot-string-bold (x y str &optional (size 12))
(setq x (truncate x) y (truncate y))
(ask *w* (set-window-font (list "Times" :plain :bold size)))
(ask *w* (move-to x y))
(princ str *w*))

; Plots a string in italic font at position (x j):

”

(defun plot-string-italic (x y str)
(setq x (truncate x) y (truncate y))
(ask *w* (set-window-font '("Times" :plain :italic 12)))
(ask *w* (move-to x y))
(princ str *w*))

; Tests for a mouse down event (returns nil if the mouse button is
; not being held down when this function is called; returns a list

; of the x and y screen coordinates relative to the plot window

; origin if the mouse button is being held down while this

; function is being called):

Graphics Primitives 9

(defun plot-mouse-down ()
(mouse-down-p))

; A simple test program:

(defun test ()
(show-plot)
(clear-plot)
(dotimes (i 6)
(plot-fill-rect
(*i9)
(*i9)
88
i)
(plot-frame-rect (*i 9) (*i 9) 8 8))
(dotimes (i 50)
(plot-size-rect
(+ 160 (random 200)) (random 100) (random 20) (random 20) (random 5)))
(dotimes (i 4)
(plot-string (*i 10) (+ 150 (* i 22)) "Mark’s plot utilities..."))
(plot-string-bold 20 260 "This is a test... of BOLD")
(plot-string-italic 20 280 "This is a test... of ITALIC"))

Before you implement these primitives within your Common LISP environment,
note the following;:

1. Ifyouarenotusing Macintosh Common LISP, it will be necessary torecode each
ofthe above functions using graphics functions provided by your Common LISP
vendor. You can start by implementing init-plot, plot-line, and plot-string. The
remaining functions can be "stubbed" and implemented later as you need them.

2. Ifthe graphics library provided with your Common LISP environment does not
supportdifferent fonts, use the function plot-string for drawing characters on the
screen.

The screen image in Figure 2.1 shows the results of executing the function fest at
the end of the preceeding listing.

10 Basic Software Tools

= ==————=—= Plot Window &==——=—-[=

8 _
n . fo.
- |]

Murk's plot tilities. ..
Mark's plot utilities...

Mark's plot utilities...

This is a test... of BOLD

This is qtest... of ITALIC

Figure 2.1. Sample screen image showing the execution of function test in the graphics
primitives plot library.

3
The Substrates of Intelligence,
a Neural Network Primer

What is an artificial neural network? How do artificial neural networks compare
with conventional computers and traditional massively parallel computers, and
when are they more useful? What are possible applications of neural network
technology? These questions will be answered in the beginning of this chapter,
followed by the presentation of an engineering model based on equations which
characterize the behavior of one popular class of neural networks for supervised
learning. Supervised learning uses both input training patterns and desired system
output patterns for neural network training. This chapter then provides a simple
program demonstrating how to write and run artificial neural network simulators
followed by a listing of a complete production-capable neural network simulator.
Examples show how to set up training data for and run this complete simulator
(which is used for speech recognition in chapter 5 and reading handwritten
characters in chapter 6). This chapter ends with more suggested projects and hints
for their solution.

3.1 Background

Neural networks are systems of very simple processing elements that are massively
interconnected. Long term memory or information content in neural networks is
typically stored in the state of the interconnections, not the processing elements
themselves. Currently artificial neural systems are computer simulations of systems
containing large numbers of massively interconnected processors. Neural networks
are not programmed in the traditional sense; they are trained by exposure to data
values specifying desired system outputs for given system inputs.

Many Al problems can be solved in principle with known algorithms, but not in
practice because of the limited processing capabilities of the Von Neuman computer
model (as implemented in single processor IBM PCs, Apple Macintoshs, DEC
VAXs, CRAYSs, etc.). These conventional computer systems are best used for
applications which are procedurally oriented like business and nonparallel scien-
tific calculations. By contrast, neural systems exploit the inherent parallelism in
many pattern-matching and recognition tasks. In the future they will be used to
augment conventional computers, greatly speeding up pattern matching and cogni-
tive tasks.

Neural systems are very fault tolerant; they can be partially destroyed and still
function with some degradation of performance. This fault tolerance will someday

