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Chapter One

Introduction

We will consider infinite matrices indexed by Z (or Z%) associated to a dynamical
system in the sense that

H= (H(x)m,")m,nez

satisfies

H(x)m+1,n+1 = H(T-'I:)m,n

where z € 2, and T is an ergodic measure-preserving transformation of 2. Typical
settings considered here are

Q=T Tr=z+w (1 — frequency shift)
Q=T? Tr=xz+w (d-— frequency shift)
N=T? Tz=(x1+x2,22+w) (skewshift)
Q=T? Tzx= Ax, where A € SL(Z), hyperbolic

Thus
H(Z)mn = dm—n(T™z) (1.0)

where the ¢y, are functions on Q.
We will usually assume that H(z) is self-adjoint, although many parts of our
analysis are independent of this fact. Define

Hy = Ry nyHR[1, N
where R|; ) = coordinate restriction to [1, N] C Z, and the associated Green’s
functions are
Gn(E) = (Hy — E)™!

(if Hy — F is an invertible N x N matrix).
One of our concerns will be to obtain a ‘good bound’ on Gy (E, x), except for x
in a “small” exceptional set. A typical statement would be the following:
s

IGN(E, 2)|| < eV'™ (1.1)

and

N
|GN(E, z)(m,n)| < e~ ™™l for |m — n| > = (1.2)
for all z outside a set of measure < e~ V", Here 6,0 > 0 are some constants. The
exceptional set in z does depend on E, of course. Such estimates are of importance
in the following problems, for instance.
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1. Spectral problems for lattice Schrodinger operators

Description of the spectrum Spec H (z) and eigenstates of H(z) (i.e., point spec-
trum, continuous (absolutely continuous or singular continuous) spectrum, local-
ization, extended states, etc.)

2. Long-time behavior of linear time-dependent Schrédinger operators

0
ia—1:+Au+V(z,t)u =0 (1.3)
The spatial variable z € T< (i.e., periodic bc).

The potential V' depends on time. It is well known that if V' is periodic in time
(say, 1-periodic), we are led to study the monodromy operator

Wu(t) =u(t+1)

(which is unitary).
Again, the nature of spectrum and localization of eigenfunctions are key issues.
A well known example is the so-called kicked rotor problem

Ou  0%u

1 7 +

5 +ib%+n[cosx25(t—n)]u=0 (1.4)

p s
2
oz oz e
involving periodic “kicks” in time introduced as a model in quantum chaos. Here
V' is discontinuous in time.
We assume V real. We will also assume V(-,t) smooth in z € T for all time.

By the reality of V, there is conservation of the L2%-norm.
If ug = u(0) € H*(T?), then

u(t) € H? for all time

Problem. Possible growth of ||u(t)|| g

Remark 1. It turns out that in (1.4) with typical values of a,b there is almost-
periodicity in the following sense: Assume ug sufficiently smooth (depending on
s). Then u(t) is almost as periodic as an H*-valued function and, in particular,
sup, [|u(t)|| gs < oo.

Remark 2. If in (1.3) we take V' also to be ¢-periodic, u(t) is well known to be
almost periodic in time as an L2-valued function. But there are examples where V
is smooth in x and ¢ and such that for some smooth initial data ug

sup ||u(t)||gs = oo forall s > 0
¢

3. KAM-theory via the Nash-Moser method

We refer here to a method developed by W. Craig, G. Wayne, and myself to con-
struct quasi-periodic solutions of nonlinear Hamiltonian PDEs. This approach was
used originally as a substitute of the usual KAM-scheme (as used in this context
by S. Kuksin) in situations involving multiplicities or near-multiplicities of normal
frequencies. These always appear, except in 1D problems with Dirichlet boundary
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conditions. It was realized later that this technique is also of interest in the “clas-
sical context” involving finite-dimensional phase space (leading, for instance, to
a Melnikov-type result with the “right” nonresonance assumptions) and applies in
certain non-Hamiltonian settings.

If we follow a Newton-type iteration scheme, the basic difficulty is the inversion
of nondiagonal operators obtained by linearizing the (nonlinear) PDE.

Consider, for instance, the Schrodinger case

tus + Au+eF(u,a) =0 (1.5)
The linearized operator expressed in Fourier modes then becomes
T=D+eS
where D is diagonal with diagonal elements of the form
Dipn=kw+ pin =kw+|n2+0Q1) (k€ Zbne2?) (1.6)

and S is a Toeplitz-type matrix with (very) smooth symbol, i.e.,
S((k,n),(k',n")) = @(k — k',n —n')
where ¢(€) decays rapidly for || — oo.
In (1.6), b = dimension of invariant tori, and w € R? is the frequency vector.
The matrix T is finite (depending on the iteration step), and we seek appropriate
bounds on 7'~!. The problem again involves small-divisor issues and is treated by

multiscale analysis.
Returning to H (), one important special case is given by

H(z) = Av(T"z)opn + A (1.7)
where A is the usual lattice Laplacian
A(n,n/)=1if [n—n'| =1
=0 otherwise

Letting v(z) = cosz on T, Tz = = + w = shift, we obtain the Almost Mathieu
operator

Hy(z) = Acos(z + nw) + A (1.8)

introduced by Peierls and Hofstadter in the study of a Bloch electron in a magnetic
field and studied extensively afterwards by many authors.

For (1.8), there is basically a complete understanding of the nature of the spectrum.
Assume that w satisfies a diophantine condition

dist (kw, 27Z) = ||k.w| > c|k|~Cfor k € Z\{0}
Then, for a.e. z,
(i) A > 2: H(z) has p.p. spectrum
(i) A = 2: H(z) has purely s.c. spectrum

(ili) A < 2: H(z) has purely a.c. spectrum
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Thus there is a phase transition at A = 2.

This model has a special and remarkable self-duality property (wrt Fourier trans-
form)

cos — %A
A —2cos
observed and exploited first by Aubry. One of its implications is that
Spec Hy = Spec H%

(referring to the “topological spectrum” that is independent of ).
In more general situations involving shifts,

A(z 4+ nw)dpn + A (1.9)

with v real analytic on T¢, a rough picture is the following:
Alarge: p.p. spectrum with Anderson localization
A small: purely a.c. spectrum
A intermediate: possible coexistence of different spectral types
Recall that Anderson localization means the following:
Assume 1) an extended state, i.e.,

Hy = Ey and |, S |n|®
Then ¢ € ¢2 and
|| < e~I™ for |n| — oo

(in particular, E is an eigenvalue).

Related to possible coexistence of different spectral types (in various energy
regions), one may prove the following:

Consider

H = (Acosnw; + T cosnws)dpn + A (1.10)

where A < 2, and 7 is small. Then, for w = (w;,w;) in a set of positive measure,
H has both point spectrum and a.c. spectrum.

Remark. If in (1.9) we replace the shift by the skew shift, one expects a different
spectral behavior with localization for all A > 0 (as is the case of arandom potential).

This problem is open at this time. It is known that for all A > 0 and w in a set of
positive measure

H = A(cos@w)énn’ + A

has some p.p. spectrum.

This text originates from lectures given at the University of California, Irvine,
in 2000 and UCLA in 2001. The first 17 chapters deal mainly with localization
problems for quasi-periodic lattice Schrodinger operators. Part of this material is
borrowed from the original research papers. However, we did revise the proofs in
order to present them in a concise form with emphasis on the key analytical points.
The main interest, independent of style, is that we give an overview of a large body of
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research presently scattered in the literature. The results in Chapter 8 on regularity
properties of the Lyapounov exponent and Integrated Density of states (IDS) are
new. They refine the work from [G-S] described in Chapter 7. (Nonperturbative
quasi-periodic localization is discussed in Chapter 10. We follow the paper [B-
G] but also treat the general multifrequency case (in 1D). In [B-G], only the case
of two frequencies was considered. Our presentation here uses the full theory of
semialgebraic sets and in particular the Yomdin-Gromov uniformization theorem.
This material is discussed in Chapter 9.

Chapters 18, 19, and 20 deal with the problem of constructing quasi-periodic solu-
tions for infinite-dimensional Hamiltonian systems given by nonlinear Schrédinger
(NLS) or nonlinear wave equations (NLW). Earlier research, mainly due to C. Wayne,
S. Kuksin, W. Craig, and myself (see [C] for a review), left open a number of prob-
lems. Roughly, only 1D models and the 2D NLS could be treated.

In this work we develop a method to deal with this problem in general. Thus
we consider NLS and NLW (with periodic boundary conditions) given by a smooth
Hamiltonian perturbation of a linear equation with parameters and proof persistency
of a large family of smooth quasi-periodic solutions of the linear equation. This is
achieved in arbitrary dimension. Compared with earlier works, such as [C-W] and
[B1], we do rely here on more powerful methods to control Green’s functions. These
methods were developed initially to study quasi-periodic localization problems.
Thus the material in Chapters 18 to 20 is also new.

We want to emphasize that it is our only purpose here to convey a number of
recent developments in the general area of quasi-periodic localization and the many
remaining problems. This is an ongoing area of research, and our understanding
of most issues is still far from fully satisfactory. The material discussed, moreover,
covers only a portion of these developments (for instance, we don’t discuss at all
renormalization methods, as initiated by B. Hellfer and J. Sjostrand). We have
largely ignored the historical perspective. Nevertheless, it should be pointed out
that this field to a large extent owes its existence to the seminal work of Y. Sinai
and his collaborators (in particular, the papers [Si], [C-S], and [D-S]), as well as
the paper [F-S-W] by Frohlich, Spencer, and Wittwer. One of the significant dif-
ferences, however, between these works (and some later developments such as [E])
and ours on the technological side is the fact that we don’t rely on eigenvalue
parametrization methods, which seem, in particular, very hard to pursue in multi-
dimensional problems (such as considered in [B-G-S], for instance). It turns out
that, as mentioned earlier, lots of the analysis is independent of self-adjointness and
has potential applications to non-self-adjoint problems. We rely heavily in both
perturbative and nonperturbative settings on methods from subharmonic function
theory and the theory of semianalytic sets, which somehow turn out to be more “ro-
bust” than eigenvalue techniques (the results obtained are a bit weaker in the sense
that “good” frequencies are not always characterized by diophantine conditions, as
in [Si], [F-S-W], [E], or [J]). Jitomirskaya’s paper [J] certainly underlies much of
this recent research. Besides settling the spectral picture for the Almost Mathieu
operator and the phase transition mentioned earlier, it initiated the nonperturbative
approach with emphasis on the Lyapounov exponent and transfer matrix. Some
parts of the analysis were restricted to the cosine potential, and the extension to gen-
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eral polynomial or real analytic potentials (see [B-G]) lies at the root of the material
presented in these notes.

Next, a bit more detailed discussion of the content of the different chapters. Chap-
ters 2 through 11 are closely related to the papers [B-G] and [G-S] on nonperturbative
localization for quasi-periodic lattice Schrodinger operators of the form

Hy = (z+nw)+ A (1.11)

where v is a real analytic potential on T?(d = 1ord > 1), and A denotes the lattice
Laplacian on Z. We are mainly concerned with the issues of pure point spectrum,
Anderson localization, dynamical localization, and regularity properties of the IDS.
A key ingredient is the positivity of the Lyapounov exponent for sufficiently large \.
The results are nonperturbative in the sense that the condition A > A\¢(v) depends
on v only and not on the arithmetical properties of the rotation vector w (provided
we assume w to satisfy some diophantine condition).

Here and throughout this exposition, extensive use is made of subharmonic func-
tion techniques and the theory of semialgebraic sets. A summary of certain basic
results in semialgebraic set theory appears in Chapter 9. The basic localization the-
orem is proven in Chapter 10, and some extensions of the method to more general
operators are given in Chapter 11.

In Chapter 12 we recall some elements from Kotani’s theory for later use. But this
is far from a complete treatment of this topic, and several other results and aspects
are not mentioned.

In Chapter 13 we exhibit point spectrum in certain two-frequency models of the
form (0.11) with small A. This fact shows that, contrary to the localization theory, the
nonperturbative results on absolutely continuous spectrum, as obtained in [B-J] for
one-frequency models, fail in the multifrequency case. Equivalently, invoking the
Aubry duality, the quasi-periodic localization results on the Z?-lattice (as discussed
in Chapter 17) are only perturbative.

In Chapter 14 we develop a general perturbative method to control Green’s func-
tions of certain lattice Schrodinger operators. The main result is in some way an
“analogue” of Cartan’s theorem in analytic function theory for holomorphic matrix-
valued functions.

This approach has a wide range of applications. First, it allows us to control
Green’s functions for general Jacobi operators of the form (1.0) associated to a
dynamical system given by a skew shift (Chapter 15). As an application, we prove the
almost periodicity of smooth solutions of the kicked rotor equation (1.4) with small
 and typical parameter values a, b (Chapter 16). Next, an extension of Chapter 14 to
a 2D setting permits us to establish Anderson localization for operators of the form
(1.11) on the Z2-lattice. The statement is perturbative, i.e., A\ > A\o(v,w). However,
as indicated earlier, a nonperturbative result may be false in this situation. In fact,
considering the multifrequency generalizations of the Almost-Mathieu operator

H, = A cos(z1 + nwi) + cos(z2 + nw2)) + A (on Z) (1.12)

and its “dual”

ﬁg = cos(f + njwy + nows) + 2A (on Zz) (1.13)
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it turns out that for arbitrary A > 0, there is a set of frequencies Q = Q) C T2 of
small but positive measure such that for w € € and z in a set of positive measure,

we have
mes (Z Hz) >0
pp

(in fact, there may be coexistence of different spectral types here). Hence Hp has
true (i.e., not £2) extended states for almost all §. (Z¢-operators of the form (1.13)
were first studied in [C-D].)

Finally, the method from Chapter 14 enable us to treat KAM-type problems via
the Lyapounov-Schmidt approach (see [C-W]) in a number of situations that, due
to large sets of resonances, seemed untractable previously. (Typical issues left open
here from the earlier works are the NLS in space dimension D > 3 and the NLW
in space dimension D > 2).

In Chapter 18 we give a new proof of Melnikov’s theorem on persistency of b-
dimensional tori in (finite-dimensional) phase space of dimension > 2b (for Hamil-
tonian perturbations of a linear system, assuming the Hamiltonian given by a poly-
nomial.) The spirit of the argument is closely related to earlier discussion on pertur-
bative localization. In particular, semialgebraic set theory is used again to restrict
the parameter space.

In Chapters 19 and 20 we then apply this scheme to obtain quasi-periodic solutions
for nonlinear PDE (with periodic bc), thus involving an infinite-dimensional phase
space. Chapter 19 deals with NLS and Chapter 20 with NLW. Compared with
the finite-dimensional phase space setting discussed in Chapter 18, there are some
additional difficulties (due to large sets of resonant normal modes). But the method
is sufficiently robust to deal with them. An additional ingredient involved here is a
“separated cluster structure” for the near-resonant sets (noticed first by T. Spencer
in a 2D-Schrodinger context).

As mentioned earlier, results from Chapters 18 to 20 treat only perturbations of
linear systems with parameters. Starting from a genuine nonlinear problem, this
format may often be reached through the theory of normal forms and amplitude-
frequency modulation (see [K-P] and [B2]). This is a different aspect of the general
problem, however, that is not addressed here.

In the Appendix we consider lattice Schrodinger operators associated to strongly
mixing dynamical systems. We mainly summarize results from [C-S] and [B-S]
based on the Figotin-Pastur approach. So far, this method to evaluate Lyapounov
exponent has succeeded only in a strongly mixing context.
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