ADVANCED SERIES IN
NONLINEAR DYNAMICS
VOLUME 23

(reometrical Theory of
Dynamical Systems
and Fluid Fiows

Revised Edition

Tsutomu Kambe

World Scientific




ADVANCED SERIES IN
NONLINEAR DYNAMICS

VOLUME 23

(reometrical Theory of
Dynamical Systems

and Fluid Flows
R e

Revisé¢d i&iog{: E{ q

Tsutomu Kambe

Institute of Dynamical Systems, Japan

\\:9 World Scientific

NEW JERSEY « LONDON « SINGAPORE « BEIJING « SHANGHAIl « HONG KONG « TAIPEl « CHENNAI



Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street. Suite 401-402. Hackensack. NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Advanced Series in Nonlinear Dynamics — Vol. 23
GEOMETRICAL THEORY OF DYNAMICAL SYSTEMS AND FLUID FLOWS
Revised Edition

Copyright © 2010 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume. please pay a copying fee through the Copyright

photocopy is not required from the publisher.

ISBN-13 978-981-4282-24-6
ISBN-10 981-4282-24-3

Typeset by Stallion Press
Email: enquiries@stallionpress.com

Printed in Singapore by Mainland Press Pte Ltd.



(Greometrical Theory of
Dynamical Systems
and Fiuid Flows



ADVANCED SERIES IN NONLINEAR DYNAMICS*

Editor-in-Chief: R. S. MacKay (Univ. Warwick)

Published

Vol. 9 Transport, Chaos and Plasma Physics 2

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

10

11

12

13

14

15

16

18

19

20

21

22

23

24

25

26

S. Benkadda, F. Doveil & Y. Elskens

Renormalization and Geometry in One-Dimensional and Complex Dynamics
Y.-P. Jiang

Rayleigh—Bénard Convection
A. V. Getling

Localization and Solitary Waves in Solid Mechanics
A. R. Champneys, G. W. Hunt & J. M. T. Thompson

Time Reversibility, Computer Simulation, and Chaos
W. G. Hoover

Topics in Nonlinear Time Series Analysis — With Implications for EEG Analysis
A. Galka

Methods in Equivariant Bifurcations and Dynamical Systems
P. Chossat & R. Lauterbach

Positive Transfer Operators and Decay of Correlations
V. Baladi

Smooth Dynamical Systems
M. C. Irwin

Symplectic Twist Maps
C. Gole

Integrability and Nonintegrability of Dynamical Systems
A. Goriely

The Mathematical Theory of Permanent Progressive Water-Waves
H. Okamoto & M. Shoji

Spatio-Temporal Chaos & Vacuum Fluctuations of Quantized Fields
C. Beck

Energy Localisation and Transfer
eds. T. Dauxois, A. Litvak-Hinenzon, R. MacKay & A. Spanoudaki

Geometrical Theory of Dynamical Systems and Fluid Flows (Revised Edition)
T. Kambe

Microscopic Chaos, Fractals and Transport in Nonequilibrium
Statistical Mechanics
R. Klages

Smooth Particle Applied Mechanics — The State of the Art
W. G. Hoover

Geometry of Nonholonomically Constrained Systems
by R. H. Cushman, J. Sniatycki & H. Duistermaat

*For the complete list of titles in this series, please visit
http://www .worldscibooks.com/series/asnd_series.shtml



Preface to Revised Edition

Since the first edition in 2004, it has been five years. This book is an intro-
ductory text on geometrical theory of dynamical systems, fluid flows, and
certain integrable systems. The aim is to unify two different subjects of
Geometry and Dynamics. The former is a mathematical subject regarded
traditionally as being applied to static objects, while the latter is a physical
subject describing time evolution of mechanical systems.

In the author’s original idea, Part III of this book was meant to be the
central part that describes Fluid Mechancis, a field to which the author had
devoted himself for many years. But during the preparation of the book, he
became aware of other areas that are also equally important to learn the
interplay between geometry and dynamics. Part I on Mathematical Bases
is helpful to understand the background in depth.

After the first publication, the topic in Chapter 7 has been improved
significantly. So that, in this revised edition, Chapter 7 is rewritten com-
pletely, to describe variational formulation of ideal fluid flows in the light of
modern gauge theory of theoretical physics. In particular, §7.12 describes
a new formulation of fluid Maxwell equations. Using this opportunity, the
beginning sections of Chapter 8 have been rewritten in order for the read-
ers to easily access this unfamiliar approach to fluid flows. Also, §3.7 of
Chapter 3 is improved to clarify the original idea of Arnold (1966). New
Appendices I and J are added (by replacing the old I with the new I). The
author has tried his best to improve and correct descriptions of all the other
chapters too, and wishes that the book will be well received by all readers.

T. Kambe
May 2009

v



Preface to First Edition

This is an introductory textbook on the geometrical theory of dynami-
cal systems, fluid flows, and certain integrable systems. The subjects are
interdisciplinary and extend from mathematics, mechanics and physics to
mechanical engineering. The approach is very fundamental and would be
traced back to the times of Poincaré, Weyl and Birkhoff in the first half of
the 20th century. The theory gives geometrical and frame-independent char-
acterizations of various dynamical systems and can be applied to chaotic
systems as well from the geometrical point of view. For integrable systems,
similar but different geometrical theory is presented.

Underlying concepts of the present subject are based on the differential
geometry and the theory of Lie groups in mathematical aspect and based
on the gauge theory in physical aspect. Usually, those subjects are not
easy to access, nor familiar to most students in physics and engineering. A
great deal of effort has been directed to make the description elementary,
clear and concise, so that beginners have easy access to the subject. This
textbook is intended for upper level undergraduates and postgraduates in
physics and engineering sciences, and also for research scientists interested
in the subject.

Various dynamical systems often have common geometrical structures
that can be formulated on the basis of Riemannian geometry and Lie group
theory. Such a dynamical system always has a symmetry, namely it is invari-
ant under a group of transformations, and furthermore it is necessary that
the group manifold is endowed with a Riemannian metric. In this book,
pertinent mathematical concepts are illustrated and applied to physical
problems of several dynamical systems and integrable systems.

vii



viii Geometrical Theory of Dynamical Systems and Fluid Flows

The present text consists of four parts: 1. Mathematical Bases,
1. Dynamical Systems, I11. Flows of Ideal Fluids, and IV. Geometry of Inte-
grable Systems. Part 1 is composed of three chapters where basic mathemat-
ical concepts and tools are described. In Part II, three dynamical systems
are presented in order to illustrate the fundamental idea on the basis of the
mathematical framework of Part I. Although those systems are well-known
in mechanics and physics, new approach and formulation will be provided
from a geometrical point of view. Part 111 includes two new theoretical for-
mulations of flows of ideal fluids: one is a variational formulation on the basis
of the gauge principle and the other is a geometrical formulation based on
a group of diffeomorphisms and associated Riemannian geometry. Part 1V
aims at presenting a different geometrical formulation for integrable sys-
tems. Its historical origin is as old as the Riemannian geometry and traced
back to the times of Backlund, Bianchi and Lie, although modern theory
of geometry of integrable systems is still being developed.

More details of each Part are as follows. In Part 1. before considering
particular dynamical systems, mathematical concepts are presented and
reviewed concisely. In the first chapter. basic mathematical notions are
illustrated about flows. diffeomorphisms and the theory of Lie groups. In
the second chapter, the geometry of surface in Euclidian space R? is sum-
marized with special emphasis on the Gaussian cuvature which is one of
the central objects in this treatise. This chapter presents many elementary
concepts which are developed subsequently. In the third chapter, theory of
Riemannian differential geometry is summarized concisely and basic con-
cepts are presented: the first and second fundamental forms, commutator,
affine connection, geodesic equation. Jacobi field, and Riemannian curva-
ture tensors.

The three dynamical systems of Part Il are fairly simple but funda-
mental systems known in mechanics. They were chosen to illustrate how
the geometrical theory can be applied to dynamical systems. The first sys-
tem in Chapter 4 is a free rotation of a rigid body (Euler’s top). This is a
well-known problem in physics and one of the simplest nonlinear integrable
systems of finite degrees of freedom. Chapter 5 illustrates derivation of the
KdV equation as a geodesic equation on a group (actually an extended
group) of diffeomorphisms. which gives us a geometrical characterization of



Preface to First Edition ix

the KdV system. The third example in Chapter 6 is a geometrical analysis
of chaos of a Hamiltonian system, which is a self-gravitating system of a
finite number of point masses.

Part III is devoted to Fluid Mechanics which is considered to be a central
part of the present book. In Chapter 7, a new gauge-theoretical formulation
is presented, together with a consistent variational formulation in terms of
variation of material particles. As a result, Euler’s equation of motion is
derived for an isentropic compressible flow. This formulation implies that
the vorticity is a gauge field. Chapter 8 is a Riemannian-geometrical formu-
lation of the hydrodynamics of an incompressible ideal fluid. This gives us
not only geometrical characterization of fluid flows but also interpretation
of the origin of Riemannian curvatures of flows. Chapter 9 is a geometrical
formulation of motions of a vortex filament.

It is well known that some soliton equations admit a geometric interpre-
tation. In Part IV, Chapter 10 reviews a classical theory of the sine-Gordon
equation and the Bécklund transformation which is an oldest example of
geometry of a pseudo-spherical surface in R with the Gaussian curvature
of a constant negative value. Chapter 11 presents a geometric and group-
theoretic theory for integrable systems such as sine-Gordon equation, non-
linear Schrodinger equation, nonlinear sigma model and so on. Final section
presents a new finding [CFGO00] that all integrable systems described by the
su(2) algebra are mapped to a spherical surface.

Highlights of this treatise would be: (i) Geometrical formulation of
dynamical systems; (ii) Geometric description of ideal-fluid flows and an
interpretation of the origin of Riemannian curvatures of fluid flows; (iii) Var-
ious geometrical characterizations of dynamical fields; (iv) Gauge-theoretic
description of ideal fluid flows; and (v) Modern geometric and group-
theoretic formulation of integrable systems.

It is remarkable that the present geometrical formulations are successful
for all the problems considered here and give insight into common back-
ground of the diverse physical systems. Furthermore, the geometrical for-
mulation opens a new approach to various dynamical systems.

Parts I-1I1 of the present monograph were originally prepared as lecture
notes during the author’s stay at the Isaac Newton Institute in the pro-
gramme “Geometry and Topology of Fluid Flow” (2000). After that, the
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manuscript had been revised extensively and published as a Review arti-
cle in the journal, Fluid Dynamics Research. In addition, the present book
includes Part IV, which describes geometrical theory of Integrable Systems.
Thus, this covers an extensive area of dynamical systems and reformulates
those systems on the basis of geometrical concepts.

Tsutomu Kambe
Former Professor (Physics)’
December 2003 University of Tokyo

1Visiting Professor, Nankai Institute of Mathematics (Tianjin, China)
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